cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343040 Array T(n, k), n, k >= 0, read by antidiagonals; lunar addition table for the factorial base.

This page as a plain text file.
%I A343040 #11 Apr 08 2021 00:34:13
%S A343040 0,1,1,2,1,2,3,3,3,3,4,3,2,3,4,5,5,3,3,5,5,6,5,4,3,4,5,6,7,7,5,5,5,5,
%T A343040 7,7,8,7,8,5,4,5,8,7,8,9,9,9,9,5,5,9,9,9,9,10,9,8,9,10,5,10,9,8,9,10,
%U A343040 11,11,9,9,11,11,11,11,9,9,11,11,12,11,10,9,10,11,6,11,10,9,10,11,12
%N A343040 Array T(n, k), n, k >= 0, read by antidiagonals; lunar addition table for the factorial base.
%C A343040 The i-th digit of T(n, k) in factorial base is the largest of the i-th digits of n and of k in factorial base.
%C A343040 For n = 0..23, the factorial and primorial base representations of n are the same; hence the date sections for this sequence and for A343044 are the same.
%H A343040 Rémy Sigrist, <a href="/A343040/b343040.txt">Table of n, a(n) for n = 0..10010</a>
%H A343040 Rémy Sigrist, <a href="/A343040/a343040.png">Colored representation of the array for n, k < 6!</a> (where the color is function of T(n, k))
%H A343040 <a href="/index/Di#dismal">Index entries for sequences related to dismal (or lunar) arithmetic</a>
%H A343040 <a href="/index/Fa#facbase">Index entries for sequences related to factorial base representation</a>
%F A343040 T(n, k) = T(k, n).
%F A343040 T(m, T(n, k)) = T(T(m, n), k).
%F A343040 T(n, 0) = n.
%F A343040 T(n, n) = n.
%e A343040 Array T(n, k) begins:
%e A343040   n\k|   0   1   2   3   4   5   6   7   8   9  10  11  12
%e A343040   ---+----------------------------------------------------
%e A343040     0|   0   1   2   3   4   5   6   7   8   9  10  11  12
%e A343040     1|   1   1   3   3   5   5   7   7   9   9  11  11  13
%e A343040     2|   2   3   2   3   4   5   8   9   8   9  10  11  14
%e A343040     3|   3   3   3   3   5   5   9   9   9   9  11  11  15
%e A343040     4|   4   5   4   5   4   5  10  11  10  11  10  11  16
%e A343040     5|   5   5   5   5   5   5  11  11  11  11  11  11  17
%e A343040     6|   6   7   8   9  10  11   6   7   8   9  10  11  12
%e A343040     7|   7   7   9   9  11  11   7   7   9   9  11  11  13
%e A343040     8|   8   9   8   9  10  11   8   9   8   9  10  11  14
%e A343040     9|   9   9   9   9  11  11   9   9   9   9  11  11  15
%e A343040    10|  10  11  10  11  10  11  10  11  10  11  10  11  16
%e A343040    11|  11  11  11  11  11  11  11  11  11  11  11  11  17
%e A343040    12|  12  13  14  15  16  17  12  13  14  15  16  17  12
%e A343040 Array T(n, k) begins in factorial base:
%e A343040   n\k|    0    1   10   11   20   21  100  101  110  111  120  121  200
%e A343040   ---+-----------------------------------------------------------------
%e A343040     0|    0    1   10   11   20   21  100  101  110  111  120  121  200
%e A343040     1|    1    1   11   11   21   21  101  101  111  111  121  121  201
%e A343040    10|   10   11   10   11   20   21  110  111  110  111  120  121  210
%e A343040    11|   11   11   11   11   21   21  111  111  111  111  121  121  211
%e A343040    20|   20   21   20   21   20   21  120  121  120  121  120  121  220
%e A343040    21|   21   21   21   21   21   21  121  121  121  121  121  121  221
%e A343040   100|  100  101  110  111  120  121  100  101  110  111  120  121  200
%e A343040   101|  101  101  111  111  121  121  101  101  111  111  121  121  201
%e A343040   110|  110  111  110  111  120  121  110  111  110  111  120  121  210
%e A343040   111|  111  111  111  111  121  121  111  111  111  111  121  121  211
%e A343040   120|  120  121  120  121  120  121  120  121  120  121  120  121  220
%e A343040   121|  121  121  121  121  121  121  121  121  121  121  121  121  221
%e A343040   200|  200  201  210  211  220  221  200  201  210  211  220  221  200
%o A343040 (PARI) T(n,k) = { my (v=0, f=1); for (r=2, oo, if (n==0 && k==0, return (v), v+=max(n%r, k%r)*f; f*=r; n\=r; k\=r)) }
%Y A343040 Cf. A087061, A108731, A343040, A343044.
%K A343040 nonn,base,tabl
%O A343040 0,4
%A A343040 _Rémy Sigrist_, Apr 03 2021