This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343049 #12 Apr 10 2021 10:35:25 %S A343049 0,1,2,7,0,5,6,31,0,9,10,31,8,29,30,127,0,1,2,23,0,21,22,127,0,25,26, %T A343049 127,24,125,126,511,0,1,2,39,0,37,38,127,0,41,42,127,40,125,126,511,0, %U A343049 33,34,119,32,117,118,511,32,121,122,511,120,509,510,2047,0 %N A343049 The k-th binary digit of a(n) is the most frequent digit among the first k binary digits of n (in case of a tie, take the k-th binary digit of n). %C A343049 Leading zeros are taken into account up to the point the number of zeros exceeds the total number of ones. %C A343049 We scan the binary representation of a number starting from the least significant digit. See A343271 for the other way. %H A343049 Rémy Sigrist, <a href="/A343049/b343049.txt">Table of n, a(n) for n = 0..8192</a> %H A343049 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %F A343049 a(n) = 0 iff n belongs to A036993. %F A343049 a(n) = n iff n = 0 or n belongs to A032925. %F A343049 a(2^k-1) = 2^(2*k-1)-1 for any k > 1. %F A343049 A070939(a(n)) < 2*A070939(n). %e A343049 The first terms, in decimal and in binary, are: %e A343049 n a(n) bin(n) bin(a(n)) %e A343049 -- ---- ------ --------- %e A343049 0 0 0 0 %e A343049 1 1 1 1 %e A343049 2 2 10 10 %e A343049 3 7 11 111 %e A343049 4 0 100 0 %e A343049 5 5 101 101 %e A343049 6 6 110 110 %e A343049 7 31 111 11111 %e A343049 8 0 1000 0 %e A343049 9 9 1001 1001 %e A343049 10 10 1010 1010 %e A343049 11 31 1011 11111 %e A343049 12 8 1100 1000 %e A343049 13 29 1101 11101 %e A343049 14 30 1110 11110 %e A343049 15 127 1111 1111111 %o A343049 (PARI) a(n, base=2) = { my (d=digits(n, base), t, f=vector(base)); d=concat(vector(#d), d); forstep (k=#d, 1, -1, f[1+d[k]]++; if (vecmax(f)==f[1+d[k]], t=d[k];); d[k]=t); fromdigits(d, base) } %Y A343049 Cf. A032925, A036993, A070939, A343271, A342697. %K A343049 nonn,base %O A343049 0,3 %A A343049 _Rémy Sigrist_, Apr 09 2021