cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343050 Zuckerman numbers (A007602) ordered by increasing value of k/A007954(k) where A007954(k) is the product of the decimal digits of k.

This page as a plain text file.
%I A343050 #23 Apr 05 2021 04:03:48
%S A343050 1,2,3,4,5,6,7,8,9,36,15,24,384,175,12,735,128,672,135,144,1575,11,
%T A343050 1296,139968,624,3276,1886976,224,816,216,432,34992,1197,12768,315,
%U A343050 132,3168,115,6624,8832,2916,1176,1344,3915,739935
%N A343050 Zuckerman numbers (A007602) ordered by increasing value of k/A007954(k) where A007954(k) is the product of the decimal digits of k.
%C A343050 a(n) is the Zuckerman number corresponding to A343036(n).
%e A343050 As a table, sequence begins:
%e A343050    1 [1, 2, 3, 4, 5, 6, 7, 8, 9]
%e A343050    2 [36]
%e A343050    3 [15, 24]
%e A343050    4 [384]
%e A343050    5 [175]
%e A343050    6 [12]
%e A343050    7 [735]
%e A343050    8 [128, 672]
%e A343050    9 [135, 144, 1575]
%e A343050   10 []
%e A343050   11 [11]
%e A343050   12 [1296, 139968]
%e A343050   13 [624, 3276, 1886976]
%e A343050   14 [224]
%e A343050   15 []
%e A343050   16 []
%e A343050   17 [816]
%e A343050   18 [216, 432, 34992]
%e A343050   19 [1197, 12768]
%e A343050   20 []
%e A343050   21 [315]
%e A343050   22 [132, 3168]
%e A343050   23 [115, 6624, 8832]
%e A343050   24 []
%e A343050   25 []
%e A343050   26 []
%e A343050   27 [2916]
%e A343050   28 [1176, 1344]
%e A343050   29 [3915, 739935]
%e A343050   30 []
%e A343050   ... where the 1st column is A056770 and the number of terms per rows is A339757.
%Y A343050 Cf. A007954 (product of decimal digits), A007602 (Zuckerman numbers), A056770.
%Y A343050 Cf. A288069 (Zuckerman quotients), A342593 (Zuckerman non-quotients), A343036.
%Y A343050 Cf. A339757.
%K A343050 nonn,base,more
%O A343050 1,2
%A A343050 _Michel Marcus_, Apr 03 2021
%E A343050 a(29)-a(45) from _David A. Corneth_, Apr 03 2021