This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343051 #37 Jan 20 2024 16:06:59 %S A343051 1,16,3,256,800,125,4096,62720,115248,16807,65536,3096576,23514624, %T A343051 34012224,4782969,1048576,118947840,2518720512,13605588480, %U A343051 17148710480,2357947691,16777216,3898605568,185305595904,2609720475648,11485488551680,13234415217504,1792160394037 %N A343051 A triangle T(n,k) read by rows which can be used to calculate the area of a regular polygon with sides having length 1, provided that the polygon has an odd number of sides. %C A343051 The examples will demonstrate how this works. %H A343051 Andrew Howroyd, <a href="/A343051/b343051.txt">Table of n, a(n) for n = 0..1325</a> (rows 0..50) %F A343051 This sequence can be generated from A103327. This example is for the pentagon: 5*L^4 - 10*L^2 + 1 = 0, L = (4/5)*A. Thus 256*A^4 - 800*A^2 + 125 = 0. In the case of a heptagon, L = (4/7)*A. %F A343051 T(n,k) = binomial(2*n+1, 2*k+1)*(2*n+1)^(2*k-1)*16^(n-k). - _Andrew Howroyd_, May 23 2021 %e A343051 16*A^2 - 3 = 0, A = 0.433012... the area of an equilateral triangle with sides of length 1. %e A343051 256*A^4 - 800*A^2 + 125 = 0, A = 1.720477..., the area of a regular pentagon with sides of length 1. %e A343051 4096*A^6 - 62720*A^4 + 115248*A^2 - 16807 = 0: A = 3.63391244..., the area of a regular heptagon with sides of length 1. %e A343051 16777216*A^12 - 3898605568*A^10 + 185305595904*A^8 - 2609720475648*A^6 + 11485488551680*A^4 - 13234415217504*A^2 + 1792160394037 = 0: A = 13.185768328323878..., the area of a regular 13-gon with sides of length 1. %e A343051 This sequence can be expressed as a triangle: %e A343051 1; %e A343051 16, 3; %e A343051 256, 800, 125; %e A343051 4096, 62720, 115248, 16807; %e A343051 65536, 3096576, 23514624, 34012224, 4782969; %e A343051 ... %t A343051 T[n_, k_] := Binomial[2n+1, 2k+1] (2n+1)^(2k-1) 16^(n-k); %t A343051 Table[T[n, k], {n, 0, 6}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, May 29 2021, after _Andrew Howroyd_ *) %Y A343051 Cf. A103327. %K A343051 nonn,tabl %O A343051 0,2 %A A343051 _Peter Armstrong Maley_, May 16 2021