This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343052 #6 Apr 04 2021 01:00:05 %S A343052 6,12,6,15,10,6,24,15,12,6,28,21,15,10,6,40,28,24,15,12,6,45,36,28,21, %T A343052 15,10,6,60,45,40,28,24,15,12,6,66,55,45,36,28,21,15,10,6,84,66,60,45, %U A343052 40,28,24,15,12,6,91,78,66,55,45,36,28,21,15,10,6,112,91,84,66,60,45,40,28,24,15,12,6 %N A343052 Table read by ascending antidiagonals: T(k, n) is the minimum vertex sum in a perimeter-magic k-gon of order n. %H A343052 Terrel Trotter, <a href="https://web.archive.org/web/20070106085340/http://www.trottermath.net/simpleops/pmp.html">Perimeter-Magic Polygons</a>, Journal of Recreational Mathematics Vol. 7, No. 1, 1974, pp. 14-20 (see equations 5 and 7). %F A343052 O.g.f.: x*(1 + x^2 + y + x*(2 + 3*y))/((1 - x)^3*(1 + x)^2*(1 - y^2)). %F A343052 E.g.f.: x*((5 + 2*x)*cosh(x + y) - cosh(x - y) + 2*(2 + x)*sinh(x + y))/4. %F A343052 T(k, n) = k*(1 + k + (n mod 2)*(1 - (k mod 2)))/2. %F A343052 T(k, 3) = A265225(k-1) (conjectured). %e A343052 The table begins: %e A343052 k\n| 3 4 5 6 7 ... %e A343052 ---+-------------------- %e A343052 3 | 6 6 6 6 6 ... %e A343052 4 | 12 10 12 10 12 ... %e A343052 5 | 15 15 15 15 15 ... %e A343052 6 | 24 21 24 21 24 ... %e A343052 7 | 28 28 28 28 28 ... %e A343052 ... %t A343052 T[k_,n_]:=k(1+k+Mod[n,2](1-Mod[k,2]))/2; Table[T[k+3-n,n],{k,3,14},{n,3,k}]//Flatten %Y A343052 Cf. A000217 (n = 4), A010722 (k = 3), A010854 (k = 5), A010867 (k = 7), A265225, A343053 (maximum). %K A343052 nonn,tabl %O A343052 3,1 %A A343052 _Stefano Spezia_, Apr 03 2021