cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343066 Side c of integer-sided primitive triangles (a, b, c) whose angle B = 2*C.

Original entry on oeis.org

4, 9, 16, 25, 36, 49, 9, 64, 81, 100, 121, 25, 144, 169, 196, 225, 49, 16, 256, 289, 324, 25, 361, 81, 400, 441, 484, 529, 121, 576, 49, 625, 676, 729, 25, 169, 64, 784, 841, 900, 961, 225, 1024, 1089, 100, 1156, 1225, 49, 289, 1296, 121, 1369, 1444, 1521, 361, 1600, 1681, 36, 1764, 169, 1849, 81, 441, 1936, 2025, 196
Offset: 1

Views

Author

Bernard Schott, Apr 12 2021

Keywords

Comments

The triples (a, b, c) are displayed in increasing order of side a, and if sides a coincide then in increasing order of the side b.
This sequence is not increasing because a(7) = 9 < a(6) = 49.
If in triangle ABC, B = 2*C, then the corresponding metric relation between sides is a*c + c^2 = c * (a + c) = b^2.
All terms are perfect squares >= 4.
For the corresponding primitive triples and miscellaneous properties and references, see A343063.

Examples

			According to inequalities between a, b, c, there exist 3 types of such triangles:
c = 4 with c < a < b for the first triple (5, 6, 4).
c = 9 with c < b < a for the seventh triple (16, 15, 9).
c = 16 with a < c < b for the third triple (9, 20, 16).
		

Crossrefs

Cf. A335896 (similar for A < B < C in arithmetic progression).
Cf. A343063 (triples), A343064 (side a), A343065 (side b), A343067 (perimeter).

Programs

  • Maple
    for a from 2 to 100 do
    for c from 3 to floor(a^2/2) do
    d := c*(a+c);
    if issqr(d) and igcd(a,sqrt(d),c)=1 and abs(a-c)
    				

Formula

a(n) = A343063(n, 3)