A343073 a(n) is the number of integers 0 < b < n such that b^^x == 1 (mod n) has a solution; ^^ denotes the tetration operation (cf. A321312).
1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 6, 2, 5, 1, 9, 1, 5, 1, 3, 3, 2, 1, 3, 3, 2, 2, 5, 1, 3, 1, 5, 1, 8, 1, 9, 2, 5, 1, 8, 1, 6, 3, 5, 1, 2, 1, 4, 1, 17, 2, 5, 1, 5, 2, 3, 3, 3, 1, 7, 3, 3, 1, 15, 2, 5, 1, 5, 2, 4, 1, 16, 4, 5, 3, 10, 1, 5
Offset: 2
Keywords
Examples
For n = 5, Setting b = 1, x = 1 gives 1^^1 == 1 (mod 5). Setting b = 2, x = 3 gives 2^^3 == 2^8 == 1 (mod 5). Setting b = 3 has no solutions, since 3^^x == 2 (mod 5) for all x > 1. Setting b = 4, x = 2 gives 4^^2 == 1 (mod 5). Thus there are 3 possible values of b, and that is the value of a(5).
Links
- Bernat Pagès Vives, Table of n, a(n) for n = 2..500
- Wikipedia, Tetration
- Wikipedia, Carmichael Function
Programs
-
Mathematica
Tetration[a_,b_,mod_]:= Which[ Mod[a,mod]==0, 0, b == 1,Mod[a,mod], b==2,PowerMod[a,a,mod], b==3&&a==2,Mod[16,mod], True,PowerMod[a,Mod[(Tetration[a,b-1,EulerPhi[mod]]-Floor[Log[2,mod]]),EulerPhi[mod]]+Floor[Log[2,mod]],mod]] TetraInv[n_,mod_,it_]:= Which[ GCD[n,mod]!=1 ,0, it==LambdaRoot[mod]+1,0, Tetration[n,it,mod]==1,it, True,TetraInv[n,mod,it+1] ] LambdaRoot[n_]:=Module[{counter,it}, counter = 0; it = n; While[it!=1, it = CarmichaelLambda[it]; counter++; ]; counter ] a[n_] := Module[{counter ,t}, counter = 0; For[j=1,j<=n,j++, t =TetraInv[j,n,1]; If[t!=0,counter++] ]; counter ]
Formula
If n is a Fermat prime, a(n) = (n+1)/2.
If n is a power of 2, a(n) = 1.
Comments