This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343087 #19 Sep 08 2022 08:46:26 %S A343087 3,7,31,211,1321,7561,120121,1580041,24864841,328648321,7558911361, %T A343087 162023621761,5022732274561,93163582512001,4083134943888001, %U A343087 151075992923856001,5236072827921936001,188391763176048432001,8854412869274276304001,469283882071536644112001,29844457947060064452144001,1917963226026370264485744001 %N A343087 a(n) is the smallest prime p such that tau(p-1) = 2^n. %C A343087 tau(m) = the number of divisors of m (A000005). %C A343087 Sequences of primes p such that tau(p-1) = 2^n for 2 <= n <= 5: %C A343087 n = 2: 7, 11, 23, 47, 59, 83, 107, 167, 179, ... (A005385(k) for k >= 2). %C A343087 n = 3: 31, 41, 43, 67, 71, 79, 89, 103, 131, 137, 139, 191, ... %C A343087 n = 4: 211, 271, 281, 313, 331, 379, 409, 457, 463, 521, 547, ... %C A343087 n = 5: 1321, 2281, 2311, 2377, 2689, 2731, 2857, 2971, 3001, ... %C A343087 Conjecture: a(n) is also the smallest number m such that tau(m-1) = tau(m)^n. %H A343087 Bert Dobbelaere, <a href="/A343087/b343087.txt">Table of n, a(n) for n = 1..60</a> %e A343087 For n = 4; a(4) = 211 because 211 is the smallest prime p such that tau(p - 1) = 2^4; tau(210) = 16. %o A343087 (Magma) Ax:=func<n|exists(r){m: m in[1..10^8] | IsPrime(m) and #Divisors(m - 1) eq 2 ^ n} select r else 0>; [Ax(n): n in [1..9]] %o A343087 (Python) %o A343087 from sympy import isprime,nextprime %o A343087 primes=[2] %o A343087 def solve(v,k,i,j): %o A343087 global record,stack,primes %o A343087 if k==0: %o A343087 if isprime(v+1): %o A343087 record=v %o A343087 return %o A343087 while True: %o A343087 if i>=len(primes): %o A343087 primes.append(nextprime(primes[-1])) %o A343087 if j<len(stack) and stack[j]<primes[i]: %o A343087 f=stack[j] ; j+=1 %o A343087 else: %o A343087 f=primes[i] ; i+=1 %o A343087 if record==None or v * f**k < record: %o A343087 stack.append(f**2) %o A343087 solve(v*f,k-1,i,j) %o A343087 stack.pop() %o A343087 else: %o A343087 return %o A343087 def a343087(n): %o A343087 global record,stack %o A343087 record,stack = None,[] %o A343087 solve(1,n,0,0) %o A343087 return record+1 %o A343087 # _Bert Dobbelaere_, Apr 11 2021 %Y A343087 Cf. A000005, A000079, A037992, A343020. %K A343087 nonn %O A343087 1,1 %A A343087 _Jaroslav Krizek_, Apr 04 2021 (following a suggestion of _Vaclav Kotesovec_) %E A343087 a(11) from _Vaclav Kotesovec_, Apr 05 2021 %E A343087 More terms from _Bert Dobbelaere_, Apr 11 2021