This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343088 #19 Aug 03 2022 08:55:20 %S A343088 1,0,1,0,0,3,0,0,1,16,0,0,0,15,125,0,0,0,6,222,1296,0,0,0,1,205,3660, %T A343088 16807,0,0,0,0,120,5700,68295,262144,0,0,0,0,45,6165,156555,1436568, %U A343088 4782969,0,0,0,0,10,4945,258125,4483360,33779340,100000000 %N A343088 Triangle read by rows: T(n,k) is the number of connected labeled graphs with n edges and k vertices, 1 <= k <= n+1. %H A343088 Andrew Howroyd, <a href="/A343088/b343088.txt">Table of n, a(n) for n = 0..1325</a> (rows 0..50) %e A343088 Triangle begins: %e A343088 1; %e A343088 0, 1; %e A343088 0, 0, 3; %e A343088 0, 0, 1, 16; %e A343088 0, 0, 0, 15, 125; %e A343088 0, 0, 0, 6, 222, 1296; %e A343088 0, 0, 0, 1, 205, 3660, 16807; %e A343088 0, 0, 0, 0, 120, 5700, 68295, 262144; %e A343088 0, 0, 0, 0, 45, 6165, 156555, 1436568, 4782969; %e A343088 ... %t A343088 row[n_] := (SeriesCoefficient[#, {y, 0, n}]& /@ CoefficientList[ Log[Sum[x^k*(1+y)^Binomial[k, 2]/k!, {k, 0, n+1}]] + O[x]^(n+2), x]* Range[0, n+1]!) // Rest; %t A343088 Table[row[n], {n, 0, 9}] // Flatten (* _Jean-François Alcover_, Aug 03 2022, after _Andrew Howroyd_ *) %o A343088 (PARI) %o A343088 Row(n)={Vec(serlaplace(polcoef(log(O(x^2*x^n)+sum(k=0, n+1, x^k*(1 + y + O(y*y^n))^binomial(k, 2)/k!)), n, y)), -(n+1))} %o A343088 { for(n=0, 8, print(Row(n))) } %Y A343088 Main diagonal is A000272. %Y A343088 Subsequent diagonals give the number of connected labeled graphs with n nodes and n+k edges for k=0..11: A057500, A061540, A061541, A061542, A061543, A096117, A061544 A096150, A096224, A182294, A182295, A182371. %Y A343088 Row sums are A322137. %Y A343088 Column sums are A001187. %Y A343088 Cf. A054923 (unlabeled), A062734 (transpose), A290776 (multigraphs), A322147 (loops allowed), A331437 (series-reduced). %K A343088 nonn,tabl %O A343088 0,6 %A A343088 _Andrew Howroyd_, Apr 14 2021