This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343090 #10 Apr 15 2021 11:51:29 %S A343090 1,4,4,10,47,10,20,240,240,20,35,831,2246,831,35,56,2282,12656,12656, %T A343090 2282,56,84,5362,52164,109075,52164,5362,84,120,11256,173776,648792, %U A343090 648792,173776,11256,120,165,21690,495820,2978245,5360286,2978245,495820,21690,165 %N A343090 Triangle read by rows: T(n,k) is the number of rooted toroidal maps with n edges and k faces and without separating cycles or isthmuses, n >= 2, k = 1..n-1. %C A343090 The number of vertices is n-k. %C A343090 Column k is a polynomial of degree 3*k. This is because adding a face can increase the number of vertices whose degree is greater than two by at most two. %H A343090 Andrew Howroyd, <a href="/A343090/b343090.txt">Table of n, a(n) for n = 2..1276</a> %H A343090 T. R. S. Walsh and A. B. Lehman, <a href="http://dx.doi.org/10.1016/0095-8956(75)90050-7">Counting rooted maps by genus. III: Nonseparable maps</a>, J. Combinatorial Theory Ser. B 18 (1975), 222-259, Table VIc. %F A343090 T(n,n-k) = T(n,k). %e A343090 Triangle begins: %e A343090 1; %e A343090 4, 4; %e A343090 10, 47, 10; %e A343090 20, 240, 240, 20; %e A343090 35, 831, 2246, 831, 35; %e A343090 56, 2282, 12656, 12656, 2282, 56; %e A343090 84, 5362, 52164, 109075, 52164, 5362, 84; %e A343090 120, 11256, 173776, 648792, 648792, 173776, 11256, 120; %e A343090 ... %o A343090 (PARI) \\ Needs F from A342989. %o A343090 G(n,m,y,z)={my(p=F(n,m,y,z)); subst(p, x, serreverse(x*p^2))} %o A343090 H(n, g=1)={my(q=G(n, g, 'y, 'z)-x*(1+'z), v=Vec(polcoef(sqrt(serreverse(x/q^2)/x), g, 'y))); [Vecrev(t) | t<-v]} %o A343090 { my(T=H(10)); for(n=1, #T, print(T[n])) } %Y A343090 Columns 1..4 are A000292, A006422, A006423, A006424. %Y A343090 Row sums are A343091. %Y A343090 Cf. A269921, A342980, A342989, A343092. %K A343090 nonn,tabl %O A343090 2,2 %A A343090 _Andrew Howroyd_, Apr 04 2021