This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343092 #11 Apr 15 2021 11:53:02 %S A343092 1,4,10,10,79,70,20,340,900,420,35,1071,5846,7885,2310,56,2772,26320, %T A343092 71372,59080,12012,84,6258,93436,431739,706068,398846,60060,120,12768, %U A343092 280120,2000280,5494896,6052840,2499096,291720,165,24090,739420,7643265,32055391,58677420,46759630,14805705,1385670 %N A343092 Triangle read by rows: T(n,k) is the number of rooted toroidal maps with n edges and k faces and without isthmuses, n >= 2, k = 1..n-1. %C A343092 The number of vertices is n - k. %C A343092 Column k is a polynomial of degree 3*k. This is because adding a face can increase the number of vertices whose degree is greater than two by at most two. %H A343092 Andrew Howroyd, <a href="/A343092/b343092.txt">Table of n, a(n) for n = 2..1276</a> %H A343092 T. R. S. Walsh and A. B. Lehman, <a href="http://dx.doi.org/10.1016/0095-8956(75)90050-7">Counting rooted maps by genus. III: Nonseparable maps</a>, J. Combinatorial Theory Ser. B 18 (1975), 222-259, Table VId. %e A343092 Triangle begins: %e A343092 1; %e A343092 4, 10; %e A343092 10, 79, 70; %e A343092 20, 340, 900, 420; %e A343092 35, 1071, 5846, 7885, 2310; %e A343092 56, 2772, 26320, 71372, 59080, 12012; %e A343092 84, 6258, 93436, 431739, 706068, 398846, 60060; %e A343092 ... %o A343092 (PARI) \\ Needs F from A342989. %o A343092 G(n,m,y,z)={my(p=F(n,m,y,z)); subst(p, x, serreverse(x*p^2))} %o A343092 H(n, g=1)={my(q=G(n, g, 'y, 'z)-x, v=Vec(polcoef(sqrt(serreverse(x/q^2)/x), g, 'y))); [Vecrev(t) | t<-v]} %o A343092 { my(T=H(10)); for(n=1, #T, print(T[n])) } %Y A343092 Columns 1..2 are A000292, A006469. %Y A343092 Diagonals are A002802, A006425, A006426, A006427. %Y A343092 Row sums are A343093. %Y A343092 Cf. A269921, A342981, A342989, A343090. %K A343092 nonn,tabl %O A343092 2,2 %A A343092 _Andrew Howroyd_, Apr 04 2021