cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343095 Array read by antidiagonals: T(n,k) is the number of k-colorings of an n X n grid, up to rotational symmetry.

This page as a plain text file.
%I A343095 #13 Nov 30 2023 12:03:50
%S A343095 1,1,0,1,1,0,1,2,1,0,1,3,6,1,0,1,4,24,140,1,0,1,5,70,4995,16456,1,0,1,
%T A343095 6,165,65824,10763361,8390720,1,0,1,7,336,489125,1073758336,
%U A343095 211822552035,17179934976,1,0,1,8,616,2521476,38147070625,281474993496064,37523658921114744,140737496748032,1,0
%N A343095 Array read by antidiagonals: T(n,k) is the number of k-colorings of an n X n grid, up to rotational symmetry.
%H A343095 Andrew Howroyd, <a href="/A343095/b343095.txt">Table of n, a(n) for n = 0..860</a>
%H A343095 Peter Kagey and William Keehn, <a href="https://arxiv.org/abs/2311.13072">Counting tilings of the n X m grid, cylinder, and torus</a>, arXiv:2311.13072 [math.CO], 2023. See p. 3.
%F A343095 T(n,k) = (k^(n^2) + 2*k^((n^2 + 3*(n mod 2))/4) + k^((n^2 + (n mod 2))/2))/4.
%e A343095 Array begins:
%e A343095 ====================================================================
%e A343095 n\k | 0 1       2            3               4                 5
%e A343095 ----+---------------------------------------------------------------
%e A343095   0 | 1 1       1            1               1                 1 ...
%e A343095   1 | 0 1       2            3               4                 5 ...
%e A343095   2 | 0 1       6           24              70               165 ...
%e A343095   3 | 0 1     140         4995           65824            489125 ...
%e A343095   4 | 0 1   16456     10763361      1073758336       38147070625 ...
%e A343095   5 | 0 1 8390720 211822552035 281474993496064 74505806274453125 ...
%e A343095   ...
%t A343095 {{1}}~Join~Table[Function[n, (k^(n^2) + 2*k^((n^2 + 3 #)/4) + k^((n^2 + #)/2))/4 &[Mod[n, 2] ] ][m - k + 1], {m, 0, 8}, {k, m + 1, 0, -1}] // Flatten (* _Michael De Vlieger_, Nov 30 2023 *)
%o A343095 (PARI) T(n,k) = (k^(n^2) + 2*k^((n^2 + 3*(n%2))/4) + k^((n^2 + (n%2))/2))/4
%Y A343095 Rows 0..5 are A000012, A001477, A006528, A282613, A283027, A283031.
%Y A343095 Columns 0..10 are A000007, A000012, A047937, A047938, A047939, A047940, A047941, A047942, A047943, A047944, A047945.
%Y A343095 Main diagonal is A343096.
%Y A343095 Cf. A182406, A246106, A343097, A343874.
%K A343095 nonn,tabl
%O A343095 0,8
%A A343095 _Andrew Howroyd_, Apr 14 2021