This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343116 #4 Apr 05 2021 20:41:32 %S A343116 6,24,100,112,110,364,612,342,1104,406,930,2812,1640,3784,1504,5724, %T A343116 3422,3660,9112,4970,10804,6162,13944,3916,19012,5050,21424,7704, %U A343116 11772,8588,32512,17030,37812,6394,22052,7550,49612,53464,56112,60204,31862,16290,36290 %N A343116 a(n) is the Pisano period of prime(n)^2. %F A343116 a(n) = A001175(A001248(n)). %o A343116 (PARI) \\ After _Charles R Greathouse IV_ in A001175 (Start) %o A343116 fibmod(n, m)=((Mod([1, 1; 1, 0], m))^n)[1, 2] %o A343116 entryp(p)=my(k=p+[0, -1, 1, 1, -1][p%5+1], f=factor(k)); for(i=1, #f[, 1], for(j=1, f[i, 2], if((Mod([1, 1; 1, 0], p)^(k/f[i, 1]))[1, 2], break); k/=f[i, 1])); k %o A343116 entry(n)=if(n==1, return(1)); my(f=factor(n), v); v=vector(#f~, i, if(f[i, 1]>1e14, entryp(f[i, 1]^f[i, 2]), entryp(f[i, 1])*f[i, 1]^(f[i, 2] - 1))); if(f[1, 1]==2&&f[1, 2]>1, v[1]=3<<max(f[1, 2]-2, 1)); lcm(v) %o A343116 a001175(n)=if(n==1, return(1)); my(k=entry(n)); forstep(i=k, n^2, k, if(fibmod(i-1, n)==1, return(i))) %o A343116 \\ (End) %o A343116 a(n) = my(p=prime(n)); a001175(p^2) %Y A343116 Cf. A001175, A001248, A060305. %K A343116 nonn %O A343116 1,1 %A A343116 _Felix Fröhlich_, Apr 05 2021