A343123 Primes p such that the sum of A001414(k) for k strictly between p and the following prime is a proper prime power (a term of A246547).
3, 13, 17, 19, 239, 269, 457, 751, 1091, 1319, 1871, 2129, 2141, 2341, 2549, 2683, 2969, 3167, 3359, 3671, 3821, 4091, 4799, 5437, 5843, 6299, 6551, 6779, 7559, 8387, 8999, 9239, 9419, 10529, 11057, 11717, 11777, 12071, 13309, 13901, 17027, 17203, 18047, 18311, 18521, 21139, 23831, 26249, 26861
Offset: 1
Keywords
Examples
a(4) = 19 is a term because 19 and 23 are consecutive primes with Sum_{19 < j < 23} A001414(j) = 9+10+13 = 32 = 2^5.
Links
- Robert Israel, Table of n, a(n) for n = 1..3000
Programs
-
Maple
spf:= proc(n) local t; add(t[1]*t[2],t=ifactors(n)[2]) end proc: R:= NULL: count:= 0: p:= 2: while count < 100 do q:= p; p:= nextprime(p); L:= ifactors(add(spf(i),i=q+1..p-1))[2]; if nops(L) = 1 and L[1][2]>1 then count:= count+1; R:= R, q; fi od: R;
Comments