A343133 Numbers k such that A064839(k) = A064839(k+1).
1, 9, 58, 61, 73, 80, 82, 1224, 1368, 3075, 3720, 5328, 22112, 45890, 145132, 145138, 269843, 377739, 399281, 622515, 744768, 1280073, 1280437, 1280441, 1281165, 1281190, 1281241, 2961840, 33275384, 54025424, 54161775, 70695344, 91136415, 922135875, 922141772
Offset: 1
Keywords
Examples
9 is a term since 9 = 3^2 = A001248(2) is the second square of a prime, and 9 + 1 = 10 = 2 * 5 = A006881(2) is the second squarefree semiprime. 58 is a term since 58 = 2*29 = A001248(17) is the 17th squarefree semiprime, and 58 + 1 = 59 = A000040(17) is the 17th prime.
Programs
-
Mathematica
lpsv = Cases[Import["https://oeis.org/A025487/b025487.txt", "Table"], {, }][[;; , 2]]; lps[n_] := Module[{s = Sort[FactorInteger[n][[;; , 2]]], m}, m = Length[s]; Product[Prime[i]^s[[m - i + 1]], {i, 1, m}]]; n = 100; mx = lpsv[[n]]; c = Table[0, {n}]; v1 = 1; s = {}; Do[lps1 = lps[k]; p = Position[lpsv, lps1][[1, 1]]; c[[p]]++; v2 = c[[p]]; If[v1 == v2, AppendTo[s, k - 1]]; v1 = v2, {k, 2, mx}]; s
Comments