This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343139 #22 May 28 2021 17:14:53 %S A343139 15,27,51,63,120,130,131,142,153,164,208,218,230,242,252,262,263,274, %T A343139 305,318,327,338,348,360,370,381,392,413,424,435,446,456,457,702,712, %U A343139 722,732,805,860,901,912,922,932,1016,1027,1038,1039,1048,1049,1059,1071,1080 %N A343139 Numbers k that satisfy the condition digitsum(k) = digitsum(pi(k)) where pi is the prime counting function. %C A343139 a(7) = 131 is the first prime in this sequence. %C A343139 A033548 (Honaker primes) is a subsequence of this sequence. %H A343139 David A. Corneth, <a href="/A343139/b343139.txt">Table of n, a(n) for n = 1..10000</a> %e A343139 153 is a term because the number of primes up to 153 is 36 and 1 + 5 + 3 = 9 = 3 + 6. %e A343139 435 is a term because number of primes up to 435 is 84 and 4 + 3 + 5 = 12 = 8 + 4. %t A343139 fHQ[n_] := Plus @@ IntegerDigits@n == Plus @@ IntegerDigits@PrimePi@n; Select[Range[3000], fHQ[#] &] %o A343139 (PARI) for(n=1, 5000, if(sumdigits(n)==vecsum(digits(primepi(n))), print1(n, ", " ))); %o A343139 (PARI) upto(n) = { my(q = 2, ulim = nextprime(n), pi = 0, res = List()); forprime(p = 3, ulim, pi++; for(i = q, p-1, if(sumdigits(i) == sumdigits(pi), listput(res, i) ) ); q = p ); res } \\ _David A. Corneth_, May 26 2021 %o A343139 (Python) %o A343139 from sympy import primepi %o A343139 def sd(n): return sum(map(int, str(n))) %o A343139 def ok(n): return sd(n) == sd(primepi(n)) %o A343139 print(list(filter(ok, range(1, 1081)))) # _Michael S. Branicky_, May 28 2021 %Y A343139 Cf. A000720, A007953, A010846, A033548, A033549. %K A343139 nonn,easy,base %O A343139 1,1 %A A343139 _K. D. Bajpai_, Apr 06 2021