cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343147 The number of partitions of the n-th primorial into distinct parts.

This page as a plain text file.
%I A343147 #15 May 02 2022 03:32:45
%S A343147 1,1,4,296,884987529,41144767887910339859917073881177514
%N A343147 The number of partitions of the n-th primorial into distinct parts.
%H A343147 Alois P. Heinz, <a href="/A343147/b343147.txt">Table of n, a(n) for n = 0..6</a>
%F A343147 a(n) = A000009(A002110(n)).
%p A343147 b:= proc(n) b(n):= `if`(n=0, 1, b(n-1)*ithprime(n)) end:
%p A343147 g:= proc(n) option remember; `if`(n=0, 1, add(g(n-j)*add(
%p A343147      `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
%p A343147     end:
%p A343147 a:= n-> g(b(n)):
%p A343147 seq(a(n), n=0..5);
%t A343147 $RecursionLimit = 2^13;
%t A343147 b[n_] := b[n] = If[n == 0, 1, b[n - 1]*Prime[n]];
%t A343147 g[n_] := g[n] = If[n == 0, 1, Sum[g[n - j]*Sum[
%t A343147      If[OddQ[d], d, 0], {d, Divisors[j]}], {j, 1, n}]/n];
%t A343147 a[n_] := g[b[n]];
%t A343147 Table[a[n], {n, 0, 5}] (* _Jean-François Alcover_, May 02 2022, after _Alois P. Heinz_ *)
%Y A343147 Cf. A000009, A002110, A000849, A005867, A054640, A058254, A062447, A342996.
%K A343147 nonn
%O A343147 0,3
%A A343147 _Alois P. Heinz_, Apr 06 2021