cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343150 Reverse the order of all but the most significant bits in the minimal Fibonacci expansion of n.

This page as a plain text file.
%I A343150 #56 Feb 25 2022 07:06:09
%S A343150 1,2,3,4,5,7,6,8,11,10,9,12,13,18,16,15,20,14,19,17,21,29,26,24,32,23,
%T A343150 31,28,22,30,27,25,33,34,47,42,39,52,37,50,45,36,49,44,41,54,35,48,43,
%U A343150 40,53,38,51,46,55,76,68,63,84,60,81,73,58,79,71,66,87
%N A343150 Reverse the order of all but the most significant bits in the minimal Fibonacci expansion of n.
%C A343150 A self-inverse permutation of the natural numbers.
%C A343150 Analogous to A059893 with binary expansion replaced by minimal Fibonacci expansion.
%C A343150 Analogous to A343152 with maximal Fibonacci expansion replaced by minimal Fibonacci expansion.
%C A343150 The expansion of n equals A014417(n) with a 0 appended (see reference in link, p. 144).
%C A343150 Write the sequence as a (left-justified) "tetrangle" or "irregular triangle" tableau with F(t) (Fibonacci number) entries on each row, for t=1,2,3,.... Then, columns of the tableau equal rows of the Wythoff array, A035513 (see reference in link, p. 131):
%C A343150     1
%C A343150     2
%C A343150     3,  4
%C A343150     5,  7,  6
%C A343150     8, 11, 10,  9, 12
%C A343150    13, 18, 16, 15, 20, 14, 19, 17
%C A343150    ...
%H A343150 J. Parker Shectman, <a href="http://www.ootlinc.com/Fibonacci_Quilt_2_of_3_Cohorts_and_Numeration.pdf">A Quilt after Fibonacci, Part 2 of 3: Cohorts, Free Monoids, and Numeration</a>
%H A343150 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%e A343150 For an example of calculation by reversing Fibonacci binary digits, see reference in link, p. 144:
%e A343150 On the basis (1,1,2,3,5,8,13) n=13 is written as 0000001. Reversing all but the most significant digit gives 0000001, which evaluates to 13, so a(13)=13.
%e A343150 On the basis (1,1,2,3,5,8,13) n=14 is written as 0100001. Reversing all but the most significant digit gives 0000101, which evaluates to 18, so a(14)=18.
%e A343150 Note: The permutation can also be accomplished using the basis (1,2,3,5,8,13), by holding fixed the TWO most significant digits and reversing the remaining digits.
%t A343150 (*Produce indices of minimal Fibonacci representation (recursively)*)
%t A343150 MinFibInd[n_] := Module[{t = Floor[Log[GoldenRatio, Sqrt[5]*n + 1]] - 1}, Piecewise[{{{2}, n == 1}, {Append[MinFibInd[n - Fibonacci[t + 1]], t + 1], n > 1 && n - Fibonacci[t + 1] >= Fibonacci[t - 1]}, {Append[Most[MinFibInd[n - Fibonacci[t - 1]]], t + 1], n > 1 && n - Fibonacci[t + 1] < Fibonacci[t - 1]}},]];
%t A343150 (*Define a(n)*)
%t A343150 a[n_] := Module[{MFI = MinFibInd[n]}, Apply[Plus, Fibonacci[Append[Last[MFI] - Most[MFI], Last[MFI]]]]];
%t A343150 (*Generate DATA*)
%t A343150 Array[a, 67]
%Y A343150 Cf. A014417, A035513.
%Y A343150 In other bases: A344682 (lazy Fibonacci), A343152 (variation), A059893 (binary), A351702 (balanced ternary).
%K A343150 nonn,base,easy
%O A343150 1,2
%A A343150 _J. Parker Shectman_, Apr 07 2021