cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343152 Reverse the order of all but the most significant bits in the maximal Fibonacci expansion of n.

Original entry on oeis.org

1, 2, 3, 4, 6, 5, 7, 8, 11, 10, 9, 12, 16, 14, 19, 13, 18, 17, 15, 20, 21, 29, 27, 24, 32, 26, 23, 31, 22, 30, 28, 25, 33, 42, 37, 50, 35, 48, 45, 40, 53, 34, 47, 44, 39, 52, 43, 38, 51, 36, 49, 46, 41, 54, 55, 76, 71, 63, 84, 69, 61, 82, 58, 79, 74, 66, 87
Offset: 1

Views

Author

J. Parker Shectman, Apr 07 2021

Keywords

Comments

A self-inverse permutation of the natural numbers.
Analogous to A059893 with binary expansion replaced by maximal Fibonacci expansion.
Analogous to A343150 with minimal Fibonacci expansion replaced by maximal Fibonacci expansion.
For n=1, the expansion equals 1. For n>=2, the expansion equals A104326(n-1) with a 1 appended. The 1 corresponds to a digit (always equal to 1) for F(1)=1, in addition to the digit for F(2)=1. (This expansion is NOT a representation, see reference in link, pp. 106 and 137.)
Write the sequence as a (right-justified) "tetrangle" or "irregular triangle" tableau with F(t) (Fibonacci number) entries on each row, for t=1,2,3,.... Then, columns of the tableau equal rows of the array A083047 (see reference in link, p. 131):
1
2
3, 4
6, 5, 7
8, 11, 10, 9, 12
16, 14, 19, 13, 18, 17, 15, 20
...

Examples

			For an example of calculation by reversing Fibonacci binary digits, see reference in link, p. 144:
On the basis (1,1,2,3,5,8) n=13 is written as 110101, Reversing all but the most AND least significant digits gives 101011, which evaluates to 16, so a(13)=16.
On the basis (1,1,2,3,5,8) n=14 is written as 101101, Reversing all but the most AND least significant digits gives 101101, which evaluates to 14, so a(14)=14.
		

Crossrefs

Programs

  • Mathematica
    (*Produce indices of maximal Fibonacci expansion (recursively)*)
    MaxFibInd[n_] := Module[{t = Floor[Log[GoldenRatio, Sqrt[5]*n + 1]] - 1}, Piecewise[{{{1}, n == 1}, {Append[MaxFibInd[n - Fibonacci[t]], t], n > 1}},]];
    (*Define a(n)*)
    a[n_] := Module[{MFI = MaxFibInd[n]}, Apply[Plus, Fibonacci[Last[MFI] - MFI + 1]]];
    (*Generate DATA*)
    Array[a, 67]