This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343193 #39 Jun 13 2021 13:35:36 %S A343193 1,9279,92434863,923988964495,9239427676877311,92393887177379735327, %T A343193 923938441006918271400831,9239384074081430755652624559, %U A343193 92393840333765561759423951663423,923938402972369921481535120722882015 %N A343193 Number of ordered quadruples (w, x, y, z) with gcd(w, x, y, z) = 1 and 1 <= {w, x, y, z} <= 10^n. %D A343193 Joachim von zur Gathen and Jürgen Gerhard, Modern Computer Algebra, Cambridge University Press, Second Edition 2003, pp. 53-54. %H A343193 Chai Wah Wu, <a href="/A343193/b343193.txt">Table of n, a(n) for n = 0..15</a> %F A343193 Lim_{n->infinity} a(n)/10^(4*n) = 1/zeta(4) = A215267 = 90/Pi^4. %F A343193 a(n) = A082540(10^n). %e A343193 (1,2,2,3) is counted, but (2,4,4,6) is not, because gcd = 2. %e A343193 For n=1, the size of the division tesseract matrix is 10 X 10 X 10 X 10: %e A343193 . %e A343193 o------------x(w=10)------------o %e A343193 /|. ./ | %e A343193 / |. ./ | %e A343193 / |. ./ | %e A343193 / |. ./ | %e A343193 / |. z(w=10) | %e A343193 / |. . / | %e A343193 / |. . / | %e A343193 / |. . / y(w=10) %e A343193 o------------------------------.o | %e A343193 |\ /|¯¯¯¯¯¯x(w=1)¯¯¯¯¯¯/. | | %e A343193 | w / | /.| | | %e A343193 | \ z(w=1)| /. | | | %e A343193 | \ / |y(w=1) /. | | | %e A343193 | \/-------------------/. | | | %e A343193 | | | | | | w | sums %e A343193 | | Cube at w = 1 | | | | ----+----- %e A343193 | | 10 X 10 X 10 | _ _| |---------o 1 | 1000 %e A343193 | | contains | / | / 2 | 875 %e A343193 | | 1000 | / | / 3 | 973 %e A343193 | | completely | / | / 4 | 875 %e A343193 | | reduced fractions | / | / 5 | 992 %e A343193 | | |/ | / 6 | 849 %e A343193 | /------------------- \ | / 7 | 999 %e A343193 | / \ | / 8 | 875 %e A343193 | w w | / 9 | 973 %e A343193 | / \ | / 10 | 868 %e A343193 | / \ |/ ----+----- %e A343193 o -------------------------------o sum for a(1) | 9279 %o A343193 (Python) %o A343193 from labmath import mobius %o A343193 def A343193(n): return sum(mobius(k)*(10**n//k)**4 for k in range(1, 10**n+1)) %Y A343193 Cf. A215267, A013662, A082540, A342841 (3D), A342586 (2D). %Y A343193 Related counts of k-tuples: %Y A343193 pairs: A018805, A342632, A342586; %Y A343193 triples: A071778, A342935, A342841; %Y A343193 quadruples: A082540, A343527, A343193; %Y A343193 5-tuples: A343282; %Y A343193 6-tuples: A343978, A344038. - _N. J. A. Sloane_, Jun 13 2021 %K A343193 nonn %O A343193 0,2 %A A343193 _Karl-Heinz Hofmann_, Apr 07 2021 %E A343193 Edited by _N. J. A. Sloane_, Jun 13 2021