cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343193 Number of ordered quadruples (w, x, y, z) with gcd(w, x, y, z) = 1 and 1 <= {w, x, y, z} <= 10^n.

This page as a plain text file.
%I A343193 #39 Jun 13 2021 13:35:36
%S A343193 1,9279,92434863,923988964495,9239427676877311,92393887177379735327,
%T A343193 923938441006918271400831,9239384074081430755652624559,
%U A343193 92393840333765561759423951663423,923938402972369921481535120722882015
%N A343193 Number of ordered quadruples (w, x, y, z) with gcd(w, x, y, z) = 1 and 1 <= {w, x, y, z} <= 10^n.
%D A343193 Joachim von zur Gathen and Jürgen Gerhard, Modern Computer Algebra, Cambridge University Press, Second Edition 2003, pp. 53-54.
%H A343193 Chai Wah Wu, <a href="/A343193/b343193.txt">Table of n, a(n) for n = 0..15</a>
%F A343193 Lim_{n->infinity} a(n)/10^(4*n) = 1/zeta(4) = A215267 = 90/Pi^4.
%F A343193 a(n) = A082540(10^n).
%e A343193 (1,2,2,3) is counted, but (2,4,4,6) is not, because gcd = 2.
%e A343193 For n=1, the size of the division tesseract matrix is 10 X 10 X 10 X 10:
%e A343193 .
%e A343193               o------------x(w=10)------------o
%e A343193              /|.                            ./ |
%e A343193             / |.                           ./  |
%e A343193            /  |.                          ./   |
%e A343193           /   |.                         ./    |
%e A343193          /    |.                      z(w=10)  |
%e A343193         /     |.                      . /      |
%e A343193        /      |.                     . /       |
%e A343193       /       |.                   .  /     y(w=10)
%e A343193      o------------------------------.o         |
%e A343193     |\        /|¯¯¯¯¯¯x(w=1)¯¯¯¯¯¯/. |         |
%e A343193     | w      / |                 /.| |         |
%e A343193     |  \ z(w=1)|                /. | |         |
%e A343193     |   \  /   |y(w=1)         /.  | |         |
%e A343193     |    \/-------------------/.   | |         |
%e A343193     |     |                   |    | |         |        w | sums
%e A343193     |     |  Cube at w = 1    |    | |         |      ----+-----
%e A343193     |     |   10 X 10 X 10    | _ _| |---------o        1 | 1000
%e A343193     |     |    contains       |    / |         /        2 |  875
%e A343193     |     |      1000         |   /  |        /         3 |  973
%e A343193     |     |    completely     |  /   |       /          4 |  875
%e A343193     |     | reduced fractions | /    |      /           5 |  992
%e A343193     |     |                   |/     |     /            6 |  849
%e A343193     |     /------------------- \     |    /             7 |  999
%e A343193     |    /                      \    |   /              8 |  875
%e A343193     |   w                        w   |  /               9 |  973
%e A343193     |  /                          \  | /               10 |  868
%e A343193     | /                            \ |/               ----+-----
%e A343193     o -------------------------------o       sum for a(1) | 9279
%o A343193 (Python)
%o A343193 from labmath import mobius
%o A343193 def A343193(n): return sum(mobius(k)*(10**n//k)**4 for k in range(1, 10**n+1))
%Y A343193 Cf. A215267, A013662, A082540, A342841 (3D), A342586 (2D).
%Y A343193 Related counts of k-tuples:
%Y A343193 pairs: A018805, A342632, A342586;
%Y A343193 triples: A071778, A342935, A342841;
%Y A343193 quadruples: A082540, A343527, A343193;
%Y A343193 5-tuples: A343282;
%Y A343193 6-tuples: A343978, A344038. - _N. J. A. Sloane_, Jun 13 2021
%K A343193 nonn
%O A343193 0,2
%A A343193 _Karl-Heinz Hofmann_, Apr 07 2021
%E A343193 Edited by _N. J. A. Sloane_, Jun 13 2021