cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343194 a(n) is the parameter b in the three-parameter description of 3 X 3 magic squares of consecutive primes (see comment).

Original entry on oeis.org

12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 30, 12, 30, 12, 12, 12, 30, 12, 12, 30, 12, 12, 30, 12, 30, 12, 18, 12, 12, 30, 12, 30, 12, 18, 12, 12, 12, 12, 30, 12, 12, 60, 30, 12, 12, 12, 30, 30, 12, 6, 30, 30, 18, 18, 42, 12, 12, 42, 12, 12, 18, 12, 12, 12, 12, 30
Offset: 1

Views

Author

A.H.M. Smeets, Apr 07 2021

Keywords

Comments

Each 3 X 3 magic square of consecutive primes can be described by three parameters: p1, b and c, where p1 is the smallest prime in the magic square, b > 0 and c > -b; the magic square is then given by:
+----------+----------+----------+
| p1+5b+2c | p1 | p1+4b+c |
+----------+----------+----------+
| p1+2b | p1+3b+c | p1+4b+2c |
+----------+----------+----------+
| p1+2b+c | p1+6b+2c | p1+b |
+----------+----------+----------+
p1 is given in A256891 and c is given in A343195.
If c > 0, the magic square is of type 1; if -b < c < 0, the magic square is of type 2. If the consecutive primes are given by p1, p2, ..., p9 (in increasing order), the magic square types are given by:
Type 1 Type 2
+----+----+----+ +----+----+----+
| p8 | p1 | p6 | | p8 | p1 | p7 |
+----+----+----+ +----+----+----+
| p3 | p5 | p7 | | p4 | p5 | p6 |
+----+----+----+ +----+----+----+
| p4 | p9 | p2 | | p3 | p9 | p2 |
+----+----+----+ +----+----+----+

Crossrefs

Cf. A166113 (p5), A256891 (p1), A270305 (magic constant), A343195 (c).

Formula

a(n) = (A270305(n) - 3*A256891(n) - 3*A343195(n))/9.
a(n) = (A166113(n) - A256891(n) - A343195(n))/3.