A343201 Decimal expansion of Sum_{n>=1} (-1)^(n+1)*K(n)/n!, where K(n) is the Kempner function (A002034).
3, 7, 2, 1, 3, 8, 4, 4, 1, 6, 3, 2, 0, 4, 2, 8, 1, 4, 6, 8, 1, 9, 9, 1, 9, 4, 1, 5, 8, 5, 5, 8, 3, 9, 6, 9, 0, 2, 0, 7, 3, 7, 9, 4, 5, 6, 3, 9, 7, 7, 3, 2, 7, 9, 5, 2, 1, 9, 7, 2, 3, 0, 7, 5, 5, 8, 8, 7, 8, 3, 4, 2, 7, 7, 7, 1, 3, 1, 5, 5, 1, 1, 0, 8, 9, 1, 0
Offset: 0
Examples
0.37213844163204281468199194158558396902073794563977...
Links
- József Sàndor, On the irrationality of certain alternative Smarandache series, in: C. Dumitrescu and V. Seleacu (eds.), Proceedings of the first international conference on Smarandache type notions in number theory, University of Craiova, 21-24 August 1997, American Research Press, 1997, pp. 124-125.
Programs
-
Mathematica
kempner[n_] := Module[{k = 1}, While[! Divisible[k!, n], k++]; k]; RealDigits[Sum[(-1)^(n + 1) * kempner[n]/n!, {n, 1, 100}], 10, 100][[1]]
Comments