A343229 A binary encoding of the digits "-1" in balanced ternary representation of n.
0, 0, 1, 0, 0, 3, 2, 2, 1, 0, 0, 1, 0, 0, 7, 6, 6, 5, 4, 4, 5, 4, 4, 3, 2, 2, 1, 0, 0, 1, 0, 0, 3, 2, 2, 1, 0, 0, 1, 0, 0, 15, 14, 14, 13, 12, 12, 13, 12, 12, 11, 10, 10, 9, 8, 8, 9, 8, 8, 11, 10, 10, 9, 8, 8, 9, 8, 8, 7, 6, 6, 5, 4, 4, 5, 4, 4, 3, 2, 2, 1, 0
Offset: 0
Examples
The first terms, alongside the balanced ternary representation of n (with "T" instead of digits "-1") and the binary representation of a(n), are: n a(n) ter(n) bin(a(n)) -- ---- ------ --------- 0 0 0 0 1 0 1 0 2 1 1T 1 3 0 10 0 4 0 11 0 5 3 1TT 11 6 2 1T0 10 7 2 1T1 10 8 1 10T 1 9 0 100 0 10 0 101 0 11 1 11T 1 12 0 110 0 13 0 111 0 14 7 1TTT 111 15 6 1TT0 110
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..6561
- Wikipedia, Balanced ternary
Crossrefs
Programs
-
PARI
a(n) = { my (v=0, b=1, t); while (n, t=centerlift(Mod(n, 3)); if (t==-1, v+=b); n=(n-t)\3; b*=2); v }
Comments