A343230 A binary encoding of the digits "0" in balanced ternary representation of n.
0, 0, 0, 1, 0, 0, 1, 0, 2, 3, 2, 0, 1, 0, 0, 1, 0, 2, 3, 2, 0, 1, 0, 4, 5, 4, 6, 7, 6, 4, 5, 4, 0, 1, 0, 2, 3, 2, 0, 1, 0, 0, 1, 0, 2, 3, 2, 0, 1, 0, 4, 5, 4, 6, 7, 6, 4, 5, 4, 0, 1, 0, 2, 3, 2, 0, 1, 0, 8, 9, 8, 10, 11, 10, 8, 9, 8, 12, 13, 12, 14, 15, 14, 12
Offset: 0
Examples
The first terms, alongside the balanced ternary representation of n (with "T" instead of digits "-1") and the binary representation of a(n), are: n a(n) ter(n) bin(a(n)) -- ---- ------ --------- 0 0 0 0 1 0 1 0 2 0 1T 0 3 1 10 1 4 0 11 0 5 0 1TT 0 6 1 1T0 1 7 0 1T1 0 8 2 10T 10 9 3 100 11 10 2 101 10 11 0 11T 0 12 1 110 1 13 0 111 0 14 0 1TTT 0 15 1 1TT0 1
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..6561
- Wikipedia, Balanced ternary
Programs
-
PARI
a(n) = { my (v=0, b=1, t); while (n, t=centerlift(Mod(n, 3)); if (t==0, v+=b); n=(n-t)\3; b*=2); v }
Comments