cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343232 Irregular triangle T read by rows: T(n, m) gives the solutions j of the congruence A002061(j+1) = j^2 + j + 1 == 0 (mod k(n)), with k(n) = A034017(n+1), for j from {0, 1, ..., k(n)-1}, and n >= 1.

This page as a plain text file.
%I A343232 #15 Apr 09 2021 14:55:43
%S A343232 0,1,2,4,3,9,7,11,4,16,5,25,10,26,16,22,6,36,18,30,7,49,13,47,29,37,8,
%T A343232 64,23,55,9,16,74,81,25,67,35,61,46,56,45,63,10,100,19,107,49,79,11,
%U A343232 30,102,121,42,96,67,79
%N A343232 Irregular triangle T read by rows: T(n, m) gives the solutions j of the congruence A002061(j+1) = j^2 + j + 1 == 0 (mod k(n)), with k(n) = A034017(n+1), for j from {0, 1, ..., k(n)-1}, and n >= 1.
%C A343232 The length of row n is A341422(n), the number of representative parallel primitive forms (rpapfs) for positive binary quadratic forms of Discriminant = -3 representing k = k(n) = A034017(n+1), for n >= 1.
%C A343232 These rpapfs for each j are [k(n), 2*j+1, (j^2 + j + 1)/k(n)], for n >= 1.
%C A343232 The solutions for k(n) >= 7 come in pairs j and k(n) - (1 + j). For k(1) = 1 and k(2) = 3 these pairs collapse to one solution.
%F A343232 T(n, m) gives the solutions j of A002061(j+1) = j^2 + j + 1 == 0 (mod k(n)), for k(n) = A034017(n+1), for n >= 1.
%e A343232 The irregular triangle T(n, m) begins:
%e A343232 n,   k(n)\m  1   2   3   4 ...   rpapfs
%e A343232 1,    1:     0                  [1,1,1]
%e A343232 2,    3:     1                  [3,3,1]
%e A343232 3,    7:     2   4              [7,5,1],      [7,9,3]
%e A343232 4,   13:     3   9              [13,7,1],     [13,19,7]
%e A343232 5,   19:     7  11              [19,15,3],    [19,23,7]
%e A343232 6,   21:    14  16              [21,9,1],     [21,33,13]
%e A343232 7,   31:     5  25              [31,11,1],    [31,51,21]
%e A343232 8,   37:    10  26              [37,21,3],    [37,53,19]
%e A343232 9,   39:    16  22              [39,33,7],    [39,45,13]
%e A343232 10,  43:     6  36              [43,13,1],    [43,73,31]
%e A343232 11,  49:    18  30              [49,37,7],    [49,61,19]
%e A343232 12,  57:     7  49              [57,15,1],    [57,99,43]
%e A343232 13,  61:    13  47              [61,27,3],    [61,95,37]
%e A343232 14,  67:    29  37              [67,59,13],   [67,75,21]
%e A343232 15,  73:     8  64              [73,17,1],    [73,129,57]
%e A343232 16,  79:    23  55              [79,47,7],    [79,111,39]
%e A343232 17,  91:     9  16              [91,19,1],    [91,33,3], [91,149,61],
%e A343232                                 [91,163,73]
%e A343232 18,  93:    25  67              [93,51,7],    [93,135,49]
%e A343232 19,  97:    35  61              [97,71,13] ,  [97,123,39]
%e A343232 20, 103:    46  56              [103,93,21],  [103,113,31]
%e A343232 21, 109:    45  63              [109,91,19],  [109,127,37]
%e A343232 22, 111:    10 100              [111,21,1],   [111,201,91]
%e A343232 23, 127:    19 107              [127,39,3],   [127,215,91]
%e A343232 24, 129:    49  79              [129,99,19],  [129,159,49]
%e A343232 25, 133:    11  30 102 121      [133, 23,1],  [133,61,7], [133,205,79],
%e A343232                                 [133,243,111]
%e A343232 26, 139     42  96              [139,85,13],  [139,193, 67]
%e A343232 27, 147:    67  79              [147,135,31], [147,159,43]
%e A343232 28, 151:    32 118              [151,65,7],   [151,237,93]
%e A343232 29, 157:    12 144              [157,25,1],   [157,289,133]
%e A343232 30, 163:    58 104              [163,117,21], [163,209,67]
%e A343232 ...
%Y A343232 Cf. A002061, A034017, A341422.
%K A343232 nonn,easy,tabf
%O A343232 1,3
%A A343232 _Wolfdieter Lang_, Apr 08 2021