This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343232 #15 Apr 09 2021 14:55:43 %S A343232 0,1,2,4,3,9,7,11,4,16,5,25,10,26,16,22,6,36,18,30,7,49,13,47,29,37,8, %T A343232 64,23,55,9,16,74,81,25,67,35,61,46,56,45,63,10,100,19,107,49,79,11, %U A343232 30,102,121,42,96,67,79 %N A343232 Irregular triangle T read by rows: T(n, m) gives the solutions j of the congruence A002061(j+1) = j^2 + j + 1 == 0 (mod k(n)), with k(n) = A034017(n+1), for j from {0, 1, ..., k(n)-1}, and n >= 1. %C A343232 The length of row n is A341422(n), the number of representative parallel primitive forms (rpapfs) for positive binary quadratic forms of Discriminant = -3 representing k = k(n) = A034017(n+1), for n >= 1. %C A343232 These rpapfs for each j are [k(n), 2*j+1, (j^2 + j + 1)/k(n)], for n >= 1. %C A343232 The solutions for k(n) >= 7 come in pairs j and k(n) - (1 + j). For k(1) = 1 and k(2) = 3 these pairs collapse to one solution. %F A343232 T(n, m) gives the solutions j of A002061(j+1) = j^2 + j + 1 == 0 (mod k(n)), for k(n) = A034017(n+1), for n >= 1. %e A343232 The irregular triangle T(n, m) begins: %e A343232 n, k(n)\m 1 2 3 4 ... rpapfs %e A343232 1, 1: 0 [1,1,1] %e A343232 2, 3: 1 [3,3,1] %e A343232 3, 7: 2 4 [7,5,1], [7,9,3] %e A343232 4, 13: 3 9 [13,7,1], [13,19,7] %e A343232 5, 19: 7 11 [19,15,3], [19,23,7] %e A343232 6, 21: 14 16 [21,9,1], [21,33,13] %e A343232 7, 31: 5 25 [31,11,1], [31,51,21] %e A343232 8, 37: 10 26 [37,21,3], [37,53,19] %e A343232 9, 39: 16 22 [39,33,7], [39,45,13] %e A343232 10, 43: 6 36 [43,13,1], [43,73,31] %e A343232 11, 49: 18 30 [49,37,7], [49,61,19] %e A343232 12, 57: 7 49 [57,15,1], [57,99,43] %e A343232 13, 61: 13 47 [61,27,3], [61,95,37] %e A343232 14, 67: 29 37 [67,59,13], [67,75,21] %e A343232 15, 73: 8 64 [73,17,1], [73,129,57] %e A343232 16, 79: 23 55 [79,47,7], [79,111,39] %e A343232 17, 91: 9 16 [91,19,1], [91,33,3], [91,149,61], %e A343232 [91,163,73] %e A343232 18, 93: 25 67 [93,51,7], [93,135,49] %e A343232 19, 97: 35 61 [97,71,13] , [97,123,39] %e A343232 20, 103: 46 56 [103,93,21], [103,113,31] %e A343232 21, 109: 45 63 [109,91,19], [109,127,37] %e A343232 22, 111: 10 100 [111,21,1], [111,201,91] %e A343232 23, 127: 19 107 [127,39,3], [127,215,91] %e A343232 24, 129: 49 79 [129,99,19], [129,159,49] %e A343232 25, 133: 11 30 102 121 [133, 23,1], [133,61,7], [133,205,79], %e A343232 [133,243,111] %e A343232 26, 139 42 96 [139,85,13], [139,193, 67] %e A343232 27, 147: 67 79 [147,135,31], [147,159,43] %e A343232 28, 151: 32 118 [151,65,7], [151,237,93] %e A343232 29, 157: 12 144 [157,25,1], [157,289,133] %e A343232 30, 163: 58 104 [163,117,21], [163,209,67] %e A343232 ... %Y A343232 Cf. A002061, A034017, A341422. %K A343232 nonn,easy,tabf %O A343232 1,3 %A A343232 _Wolfdieter Lang_, Apr 08 2021