This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343276 #17 Jun 15 2025 12:40:32 %S A343276 0,1,10,81,652,5545,50886,506905,5480056,64116657,808856290, %T A343276 10959016321,158851484100,2454385635481,40285778016862, %U A343276 700261611998985,12853532939027056,248482678808005345,5047002269952482106,107466341437781300017,2394019421567804960380 %N A343276 a(n) = n! * [x^n] -x*(x + 1)*exp(x)/(x - 1)^3. %F A343276 a(n) = Sum_{k=0..n} rf(n - k + 1, k)*k^2, where rf is the rising factorial. %F A343276 a(n) = (2 + n*(n + 2))*a(n - 1)/(n - 1) - (n + 1)*a(n - 2) for n >= 3. %F A343276 A002775(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*a(k). %F A343276 a(n) = Sum_{k=1..n} k^2*k!*binomial(n,k). - _Ridouane Oudra_, Jun 15 2025 %p A343276 egf := -x*(x + 1)*exp(x)/(x - 1)^3: ser := series(egf, x, 32): %p A343276 seq(n!*coeff(ser, x, n), n = 0..20); %t A343276 a[n_] := Sum[Pochhammer[n - k + 1, k]*k^2, {k, 0, n}]; %t A343276 Table[a[n], {n, 0, 20}] %o A343276 (SageMath) %o A343276 def a(n): return sum(rising_factorial(n - k + 1, k)*k^2 for k in (0..n)) %o A343276 print([a(n) for n in (0..20)]) %o A343276 (Python) %o A343276 def a(): %o A343276 a, b, n = 0, 1, 2 %o A343276 yield 0 %o A343276 while True: %o A343276 yield b %o A343276 a, b = b, -(n + 1)*a + ((2 + n*(n + 2))*b)//(n - 1) %o A343276 n += 1 %o A343276 A343276 = a(); print([next(A343276) for _ in range(21)]) %Y A343276 Cf. A002775, A093964. %K A343276 nonn %O A343276 0,3 %A A343276 _Peter Luschny_, Apr 20 2021