This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343282 #31 Jun 13 2021 13:36:07 %S A343282 1,96601,9645718621,964407482028001,96438925911789115351, %T A343282 9643875373658964992585011,964387358678775616636890654841, %U A343282 96438734235127451288511508421855851,9643873406165059293451290072800801506621 %N A343282 Number of ordered 5-tuples (v,w, x, y, z) with gcd(v, w, x, y, z) = 1 and 1 <= {v, w, x, y, z} <= 10^n. %D A343282 Joachim von zur Gathen and Jürgen Gerhard, Modern Computer Algebra, Cambridge University Press, Second Edition 2003, pp. 53-54. %H A343282 Chai Wah Wu, <a href="/A343282/b343282.txt">Table of n, a(n) for n = 0..15</a> %F A343282 Lim_{n->infinity} a(n)/10^(5*n) = 1/zeta(5) = A343308. %F A343282 a(n) = A082544(10^n). - _Chai Wah Wu_, Apr 11 2021 %o A343282 (Python) %o A343282 from labmath import mobius %o A343282 def A343282(n): return sum(mobius(k)*(10**n//k)**5 for k in range(1, 10**n+1)) %Y A343282 Cf. A082544, A013663, A342586, A342841, A343193. %Y A343282 Related counts of k-tuples: %Y A343282 pairs: A018805, A342632, A342586; %Y A343282 triples: A071778, A342935, A342841; %Y A343282 quadruples: A082540, A343527, A343193; %Y A343282 5-tuples: A343282; %Y A343282 6-tuples: A343978, A344038. - _N. J. A. Sloane_, Jun 13 2021 %K A343282 nonn %O A343282 0,2 %A A343282 _Karl-Heinz Hofmann_, Apr 10 2021 %E A343282 Edited by _N. J. A. Sloane_, Jun 13 2021