cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343297 Numbers k such that there are exactly two multisets of cardinality k where the sum equals the product (A033178(k)=2).

Original entry on oeis.org

7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 22, 30, 34, 36, 42, 44, 48, 54, 60, 66, 80, 84, 90, 112, 126, 142, 192, 210, 234, 252, 258, 330, 350, 354, 440, 594, 654, 714, 720, 780, 966, 1102, 2400, 2820, 4350, 4354, 5274, 6174, 6324
Offset: 1

Views

Author

Nathaniel Gregg, Apr 11 2021

Keywords

Comments

At most one of a(n) - 1 and 2*a(n)-1 are composite. More precisely, a(n) are those positive integers such that exactly one of product(s)*(a(n)+sum(s)-k-2)+1 can be factored as (product(s)*p-1)*(product(s)*q-1), where s varies over all multisets of k positive integers and 1 < p <= q < a(n). The first statement is given by considering s = {} and s = {2}. a(50) is greater than 10^4.

Examples

			a(5) = 12 because {2,2,2,2,1,1,1,1,1,1,1,1} and {12,2,1,1,1,1,1,1,1,1,1,1} are the only multisets of size 12 where the sum equals the product.
		

Crossrefs