This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343309 #4 Apr 11 2021 23:40:18 %S A343309 0,0,0,0,0,1,0,0,0,2,0,3,0,3,4,2,0,4,0,6,6,5,0,10,0,6,3,9,0,23,0,8,10, %T A343309 8,12,13,0,9,12,20,0,34,0,15,18,11,0,38,1,14,16,18,0,28,20,30,18,14,0, %U A343309 61,0,15,27,26,24,56,0,24,22,65,0,43,0,18,30,27,30,67,0,74 %N A343309 Number of partitions of n into 3 distinct parts x,y,z such that (x+y+z) | x*y*z. %H A343309 <a href="/index/Par#part">Index entries for sequences related to partitions</a> %F A343309 a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} (1 - ceiling(i*j*(n-i-j)/n) + floor(i*j*(n-i-j)/n)) * (1 - [i = j]) * (1 - [n-i = 2*j]) * (1 - [n-j = 2*i]), where [ ] is the Iverson bracket. %e A343309 a(10) = 2; [1,4,5], [2,3,5], with all parts distinct; %e A343309 a(12) = 3; [1,3,8], [2,4,6], [3,4,5], with all parts distinct. %t A343309 Table[Sum[Sum[(1 - KroneckerDelta[i, j]) (1 - KroneckerDelta[n - j, 2 i]) (1 - KroneckerDelta[n - i, 2 j]) (1 - Ceiling[i*j*(n - i - j)/n] + Floor[i*j*(n - i - j)/n]), {i, j, Floor[(n - j)/2]}], {j, Floor[n/3]}], {n, 100}] %Y A343309 Cf. A343270. %K A343309 nonn %O A343309 1,10 %A A343309 _Wesley Ivan Hurt_, Apr 11 2021