cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343310 a(n) is the number of bilaterally symmetrical self-avoiding paths connecting consecutive corners of an n X n triangular grid.

This page as a plain text file.
%I A343310 #27 Feb 16 2025 08:34:02
%S A343310 1,2,4,12,50,264,2054,22324,377704,9455172,385118374,23504746636,
%T A343310 2346325946460,348814672315896,84278783653480026,30255270733134656280,
%U A343310 17646594353716082850430,15321207204408662854455924,21654163559101840305705453010,45620955950222177660249163228084
%N A343310 a(n) is the number of bilaterally symmetrical self-avoiding paths connecting consecutive corners of an n X n triangular grid.
%C A343310 We use unit moves parallel to the triangle edges.
%H A343310 Andrew Howroyd, <a href="/A343310/b343310.txt">Table of n, a(n) for n = 1..25</a>
%H A343310 Rémy Sigrist, <a href="/A343310/a343310.png">Illustrations of a(5) = 50</a>
%H A343310 Rémy Sigrist, <a href="/A343310/a343310.gp.txt">PARI program for A343310</a>
%H A343310 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TriangularGridGraph.html">Triangular Grid Graph</a>
%H A343310 <a href="/index/Wa#WALKS">Index entries for sequences related to walks</a>
%F A343310 a(n) <= A343307(n).
%e A343310 For n = 3:
%e A343310 - we have the following bilaterally symmetrical paths:
%e A343310 .        .             .             .             o
%e A343310 .                                                 / \
%e A343310 .      .   .         o   o         o---o         o   o
%e A343310 .                   / \ / \       /     \       /     \
%e A343310 .    o---o---o     o   o   o     o   .   o     o   .   o
%e A343310 - so a(3) = 4.
%o A343310 (PARI) See Links section.
%Y A343310 Cf. A343307.
%K A343310 nonn,walk
%O A343310 1,2
%A A343310 _Rémy Sigrist_, Apr 11 2021
%E A343310 a(12)-a(13) from _Martin Ehrenstein_, May 02 2021
%E A343310 Terms a(14) and beyond from _Andrew Howroyd_, Feb 05 2022