This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343311 #11 Apr 13 2021 20:42:01 %S A343311 6,10,12,14,15,16,18,20,21,22,24,26,27,28,30,32,33,34,35,36,38,39,40, %T A343311 42,44,45,46,48,49,50,51,52,54,55,56,57,58,60,62,63,64,65,66,68,69,70, %U A343311 72,74,75,76,77,78,80,81,82,84,85,86,87,88,90,91,92,93,94,95,96,98,99,100 %N A343311 Numbers of the form x + y + z with distinct positive integers x,y,z such that (x+y+z) | x*y*z. %C A343311 From _Robert Israel_, Apr 12 2021: (Start) %C A343311 All terms are composite. %C A343311 Conjecture: Consists of all composite numbers except 4, 8, 9, and 25. (End) %H A343311 Robert Israel, <a href="/A343311/b343311.txt">Table of n, a(n) for n = 1..10000</a> %e A343311 10 is in the sequence since 10 = 1+4+5 = 2+3+5, (1+4+5) | 1*4*5 and (2+3+5) | 2*3*5. %e A343311 12 is in the sequence since 12 = 1+3+8 = 2+4+6 = 3+4+5, (1+3+8) | 1*3*8, (2+4+6) | 2*4*6 and (3+4+5) | 3*4*5. %p A343311 filter:= proc(n) local x,y,z; %p A343311 if isprime(n) then return false fi; %p A343311 x:= min(numtheory:-factorset(n)); %p A343311 y:= n/x; %p A343311 z:= n - x - y; %p A343311 if z > 0 and nops({x,y,z}) = 3 then return true fi; %p A343311 for x from 1 to n/3 do %p A343311 for y from x+1 while x+2*y+1 <= n do %p A343311 z:= n-x-y; %p A343311 if x*y*z mod n = 0 then return true fi; %p A343311 od od; %p A343311 false %p A343311 end proc: %p A343311 select(filter, [$1..100]); # _Robert Israel_, Apr 12 2021 %t A343311 Table[If[Sum[Sum[(1 - KroneckerDelta[i, j]) (1 - KroneckerDelta[n - j, 2 i]) (1 - KroneckerDelta[n - i, 2 j]) (1 - Ceiling[i*j*(n - i - j)/n] + Floor[i*j*(n - i - j)/n]), {i, j, Floor[(n - j)/2]}], {j, Floor[n/3]}] > 0, n, {}], {n, 100}] // Flatten %Y A343311 Cf. A343270. %K A343311 nonn %O A343311 1,1 %A A343311 _Wesley Ivan Hurt_, Apr 11 2021