cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A348718 Numbers whose divisors can be partitioned into two disjoint sets without singletons whose arithmetic means are both integers.

Original entry on oeis.org

6, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96
Offset: 1

Views

Author

Amiram Eldar, Oct 31 2021

Keywords

Comments

First differs from A343311 at n = 29.
Differs from A080257 which contains for example 8 and 128. - R. J. Mathar, Nov 03 2021

Examples

			6 is a term since its set of divisors, {1, 2, 3, 6}, can be partitioned into the two disjoint sets {1, 3} and {2, 6} whose arithmetic means, 2 and 4 respectively, are both integers.
		

Crossrefs

Programs

  • Mathematica
    amQ[d_] := IntegerQ @ Mean[d]; q[n_] := Module[{d = Divisors[n], nd, s, subs, ans = False}, nd = Length[d]; subs = Subsets[d]; Do[s = subs[[k]]; If[Length[s] > 1 && Length[s] <= nd/2 && amQ[s] && amQ[Complement[d, s]], ans = True; Break[]], {k, 1, Length[subs]}]; ans]; Select[Range[100], q]
Showing 1-1 of 1 results.