cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343316 Array T(n, k), n, k > 0, read by antidiagonals; the balanced ternary representation of T(n, k) is obtained by multiplying componentwise the digits in the balanced ternary representations of n and of k.

This page as a plain text file.
%I A343316 #12 Apr 12 2021 01:36:47
%S A343316 0,0,0,0,1,0,0,-1,-1,0,0,0,4,0,0,0,1,3,3,1,0,0,-1,2,3,2,-1,0,0,0,-2,3,
%T A343316 3,-2,0,0,0,1,-3,-3,4,-3,-3,1,0,0,-1,-4,-3,-4,-4,-3,-4,-1,0,0,0,1,-3,
%U A343316 -3,13,-3,-3,1,0,0,0,1,0,0,-2,12,12,-2,0,0,1,0
%N A343316 Array T(n, k), n, k > 0, read by antidiagonals; the balanced ternary representation of T(n, k) is obtained by multiplying componentwise the digits in the balanced ternary representations of n and of k.
%C A343316 For any k >= 0, n -> T(n, k) is 3^A134021(k)-periodic.
%C A343316 The zeros of the table form a Vicsek fractal (see illustration in Links section).
%H A343316 Rémy Sigrist, <a href="/A343316/b343316.txt">Table of n, a(n) for n = 0..10010</a>
%H A343316 Rémy Sigrist, <a href="/A343316/a343316.png">Colored representation of the table for n, k < 3^6</a> (where the color denotes the sign of T(n, k): red for positive values, blue for negative values, white for zeros)
%H A343316 Wikipedia, <a href="https://en.wikipedia.org/wiki/Vicsek_fractal">Viczek fractal</a>
%F A343316 T(n, k) = T(k, n).
%F A343316 T(m, T(n, k)) = T(T(m, n), k).
%F A343316 T(n, 0) = 0.
%F A343316 T(n, 1) = A102283(n).
%F A343316 T(n, n) = A060374(n).
%e A343316 Array T(n, k) begins:
%e A343316   n\k|  0   1   2   3   4   5   6   7   8  9  10  11  12
%e A343316   ---+--------------------------------------------------
%e A343316     0|  0   0   0   0   0   0   0   0   0  0   0   0   0
%e A343316     1|  0   1  -1   0   1  -1   0   1  -1  0   1  -1   0
%e A343316     2|  0  -1   4   3   2  -2  -3  -4   1  0  -1   4   3
%e A343316     3|  0   0   3   3   3  -3  -3  -3   0  0   0   3   3
%e A343316     4|  0   1   2   3   4  -4  -3  -2  -1  0   1   2   3
%e A343316     5|  0  -1  -2  -3  -4  13  12  11  10  9   8   7   6
%e A343316     6|  0   0  -3  -3  -3  12  12  12   9  9   9   6   6
%e A343316     7|  0   1  -4  -3  -2  11  12  13   8  9  10   5   6
%e A343316     8|  0  -1   1   0  -1  10   9   8  10  9   8  10   9
%e A343316     9|  0   0   0   0   0   9   9   9   9  9   9   9   9
%e A343316    10|  0   1  -1   0   1   8   9  10   8  9  10   8   9
%e A343316    11|  0  -1   4   3   2   7   6   5  10  9   8  13  12
%e A343316    12|  0   0   3   3   3   6   6   6   9  9   9  12  12
%e A343316 Array T(n, k) begins in balanced ternary notation (with "T" instead of digits "-1"):
%e A343316   n\k|  0  1  1T  10  11  1TT  1T0  1T1  10T  100  101  11T  110
%e A343316   ---+----------------------------------------------------------
%e A343316     0|  0  0   0   0   0    0    0    0    0    0    0    0    0
%e A343316     1|  0  1   T   0   1    T    0    1    T    0    1    T    0
%e A343316    1T|  0  T  11  10  1T   T1   T0   TT    1    0    T   11   10
%e A343316    10|  0  0  10  10  10   T0   T0   T0    0    0    0   10   10
%e A343316    11|  0  1  1T  10  11   TT   T0   T1    T    0    1   1T   10
%e A343316   1TT|  0  T  T1  T0  TT  111  110  11T  101  100  10T  1T1  1T0
%e A343316   1T0|  0  0  T0  T0  T0  110  110  110  100  100  100  1T0  1T0
%e A343316   1T1|  0  1  TT  T0  T1  11T  110  111  10T  100  101  1TT  1T0
%e A343316   10T|  0  T   1   0   T  101  100  10T  101  100  10T  101  100
%e A343316   100|  0  0   0   0   0  100  100  100  100  100  100  100  100
%e A343316   101|  0  1   T   0   1  10T  100  101  10T  100  101  10T  100
%e A343316   11T|  0  T  11  10  1T  1T1  1T0  1TT  101  100  10T  111  110
%e A343316   110|  0  0  10  10  10  1T0  1T0  1T0  100  100  100  110  110
%o A343316 (PARI) T(n,k) = { if (n==0 || k==0, return (0), my (d=centerlift(Mod(n,3)), t=centerlift(Mod(k,3))); d*t + 3*T((n-d)\3, (k-t)\3)) }
%Y A343316 Cf. A059095, A060374, A102283, A134021, A343317.
%K A343316 sign,tabl,base
%O A343316 0,13
%A A343316 _Rémy Sigrist_, Apr 11 2021