A343326 Number of ways to write n as the integral part of (a^3+b^3)/2 + (c^3+d^3)/6, where a,b,c,d are nonnegative integers with a >= max{b,1} and c >= max{d,1}.
2, 3, 3, 2, 4, 7, 4, 1, 4, 6, 3, 4, 3, 6, 5, 6, 5, 3, 7, 5, 2, 4, 6, 4, 5, 7, 5, 2, 6, 7, 1, 2, 8, 4, 6, 5, 9, 10, 7, 4, 6, 7, 6, 2, 5, 8, 4, 6, 5, 5, 6, 4, 2, 7, 7, 2, 3, 9, 5, 3, 4, 6, 5, 7, 9, 7, 8, 8, 12, 5, 5, 6, 9, 10, 7, 5, 7, 7, 5, 4, 3, 6, 4, 5, 6, 8, 9, 7, 5, 10, 5, 5, 3, 7, 10, 3, 3, 8, 5, 10, 9
Offset: 0
Keywords
Examples
a(0) = 2 with 0 = floor((1^3+0^3)/2 + (1^3+0^3)/6) = floor((1^3+0^3)/2 + (1^3+1^3)/6). a(7) = 1 with 7 = floor((3^3+1^3)/2 + (2^3+2^3)/6). a(30) = 1 with 30 = floor((2^3+2^3)/2 + (5^3+2^3)/6). a(111) = 1 with 111 = floor((6^3+1^3)/2 + (2^3+2^3)/6). a(163) = 1 with 163 = floor((6^3+3^3)/2 + (5^3+5^3)/6). a(219) = 1 with 219 = floor((4^3+0^3)/2 + (10^3+5^3)/6).
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 0..10000
- Zhi-Wei Sun, Natural numbers represented by floor(x^2/a) + floor(y^2/b) + floor(z^2/c), arXiv:1504.01608 [math.NT], 2015.
Programs
-
Mathematica
CQ[n_]:=CQ[n]=IntegerQ[n^(1/3)] tab={};Do[r=0;Do[If[CQ[6n+s-3(x^3+y^3)-z^3],r=r+1],{s,Boole[n==0],5},{x,1,((6n+s-1)/3)^(1/3)},{y,0,Min[x,((6n+s-1)/3-x^3)^(1/3)]},{z,0,((6n+s-3(x^3+y^3))/2)^(1/3)}];tab=Append[tab,r],{n,0,100}];Print[tab]
Comments