cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343326 Number of ways to write n as the integral part of (a^3+b^3)/2 + (c^3+d^3)/6, where a,b,c,d are nonnegative integers with a >= max{b,1} and c >= max{d,1}.

Original entry on oeis.org

2, 3, 3, 2, 4, 7, 4, 1, 4, 6, 3, 4, 3, 6, 5, 6, 5, 3, 7, 5, 2, 4, 6, 4, 5, 7, 5, 2, 6, 7, 1, 2, 8, 4, 6, 5, 9, 10, 7, 4, 6, 7, 6, 2, 5, 8, 4, 6, 5, 5, 6, 4, 2, 7, 7, 2, 3, 9, 5, 3, 4, 6, 5, 7, 9, 7, 8, 8, 12, 5, 5, 6, 9, 10, 7, 5, 7, 7, 5, 4, 3, 6, 4, 5, 6, 8, 9, 7, 5, 10, 5, 5, 3, 7, 10, 3, 3, 8, 5, 10, 9
Offset: 0

Views

Author

Zhi-Wei Sun, Apr 11 2021

Keywords

Comments

Conjecture: a(n) > 0 for any nonnegative integer n.
This has been verified for all n = 0..10^5.

Examples

			a(0) = 2 with 0 = floor((1^3+0^3)/2 + (1^3+0^3)/6) = floor((1^3+0^3)/2 + (1^3+1^3)/6).
a(7) = 1 with 7 = floor((3^3+1^3)/2 + (2^3+2^3)/6).
a(30) = 1 with 30 = floor((2^3+2^3)/2 + (5^3+2^3)/6).
a(111) = 1 with 111 = floor((6^3+1^3)/2 + (2^3+2^3)/6).
a(163) = 1 with 163 = floor((6^3+3^3)/2 + (5^3+5^3)/6).
a(219) = 1 with 219 = floor((4^3+0^3)/2 + (10^3+5^3)/6).
		

Crossrefs

Programs

  • Mathematica
    CQ[n_]:=CQ[n]=IntegerQ[n^(1/3)]
    tab={};Do[r=0;Do[If[CQ[6n+s-3(x^3+y^3)-z^3],r=r+1],{s,Boole[n==0],5},{x,1,((6n+s-1)/3)^(1/3)},{y,0,Min[x,((6n+s-1)/3-x^3)^(1/3)]},{z,0,((6n+s-3(x^3+y^3))/2)^(1/3)}];tab=Append[tab,r],{n,0,100}];Print[tab]