A343335 a(n) is the smallest proper alternating multiple of n when n is not a multiple of 20, otherwise a(20*k) = 0 for k >= 1.
2, 4, 6, 8, 10, 12, 14, 16, 18, 30, 121, 36, 52, 56, 30, 32, 34, 36, 38, 0, 63, 418, 69, 72, 50, 52, 54, 56, 58, 90, 341, 96, 165, 238, 70, 72, 74, 76, 78, 0, 123, 210, 129, 616, 90, 92, 94, 96, 98, 250, 561, 416, 212, 216, 165, 616, 456, 232, 236, 0, 183, 434, 189, 256, 325, 858
Offset: 1
Examples
For n = 13, 2 * 13 = 26, 3 * 13 = 39, 4 * 13 = 52 that is alternating, so, a(13) = 52.
Links
- The IMO Compendium, Problem 6, 45th IMO 2004.
Programs
-
Mathematica
altQ[n_] := (r = Mod[IntegerDigits[n], 2]) == Split[r, UnsameQ][[1]]; a[n_] := If[Divisible[n, 20], 0, Module[{k = 2*n}, While[!altQ[k], k += n]; k]]; Array[a, 100] (* Amiram Eldar, Apr 12 2021 *)
Comments