This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343340 #6 Apr 15 2021 21:42:39 %S A343340 30,60,66,70,90,102,110,120,132,138,140,150,154,170,180,182,186,190, %T A343340 198,204,210,220,238,240,246,264,270,273,276,280,282,286,290,300,306, %U A343340 308,310,322,330,340,350,354,360,364,372,374,380,396,402,406,408,410,414 %N A343340 Numbers with a prime index dividing all the other prime indices, but with no prime index divisible by all the other prime indices. %C A343340 Alternative name: Numbers > 1 whose smallest prime index divides all the other prime indices, but whose greatest prime index is not divisible by all the other prime indices. %C A343340 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A343340 Also Heinz numbers of partitions with greatest part not divisible by all the others, but smallest part dividing all the others (counted by A343345). The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions. %F A343340 Complement of A342193 in A343337. %e A343340 The sequence of terms together with their prime indices begins: %e A343340 30: {1,2,3} 182: {1,4,6} 282: {1,2,15} %e A343340 60: {1,1,2,3} 186: {1,2,11} 286: {1,5,6} %e A343340 66: {1,2,5} 190: {1,3,8} 290: {1,3,10} %e A343340 70: {1,3,4} 198: {1,2,2,5} 300: {1,1,2,3,3} %e A343340 90: {1,2,2,3} 204: {1,1,2,7} 306: {1,2,2,7} %e A343340 102: {1,2,7} 210: {1,2,3,4} 308: {1,1,4,5} %e A343340 110: {1,3,5} 220: {1,1,3,5} 310: {1,3,11} %e A343340 120: {1,1,1,2,3} 238: {1,4,7} 322: {1,4,9} %e A343340 132: {1,1,2,5} 240: {1,1,1,1,2,3} 330: {1,2,3,5} %e A343340 138: {1,2,9} 246: {1,2,13} 340: {1,1,3,7} %e A343340 140: {1,1,3,4} 264: {1,1,1,2,5} 350: {1,3,3,4} %e A343340 150: {1,2,3,3} 270: {1,2,2,2,3} 354: {1,2,17} %e A343340 154: {1,4,5} 273: {2,4,6} 360: {1,1,1,2,2,3} %e A343340 170: {1,3,7} 276: {1,1,2,9} 364: {1,1,4,6} %e A343340 180: {1,1,2,2,3} 280: {1,1,1,3,4} 372: {1,1,2,11} %t A343340 Select[Range[2,100],With[{p=PrimePi/@First/@FactorInteger[#]},!And@@IntegerQ/@(Max@@p/p)&&And@@IntegerQ/@(p/Min@@p)]&] %Y A343340 The first condition alone gives the complement of A342193. %Y A343340 The second condition alone gives A343337. %Y A343340 The partitions with these Heinz numbers are counted by A343345. %Y A343340 A000005 counts divisors. %Y A343340 A000070 counts partitions with a selected part. %Y A343340 A001055 counts factorizations. %Y A343340 A056239 adds up prime indices, row sums of A112798. %Y A343340 A067824 counts strict chains of divisors starting with n. %Y A343340 A253249 counts strict chains of divisors. %Y A343340 Cf. A083710, A083711, A097986, A098965, A130714, A339562, A339563, A343341, A343377, A343381. %K A343340 nonn %O A343340 1,1 %A A343340 _Gus Wiseman_, Apr 15 2021