cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343341 Number of integer partitions of n with no part divisible by all the others.

This page as a plain text file.
%I A343341 #5 Apr 15 2021 21:42:45
%S A343341 1,0,0,0,0,1,1,4,6,11,16,28,36,58,79,111,149,209,270,368,472,618,793,
%T A343341 1030,1292,1653,2073,2608,3241,4051,4982,6176,7566,9285,11320,13805,
%U A343341 16709,20275,24454,29477,35380,42472,50741,60648,72199,85887,101906,120816
%N A343341 Number of integer partitions of n with no part divisible by all the others.
%C A343341 Alternative name: Number of integer partitions of n that are either empty, or have greatest part not divisible by all the others.
%e A343341 The a(5) = 1 through a(10) = 16 partitions:
%e A343341   (32)  (321)  (43)    (53)     (54)      (64)
%e A343341                (52)    (332)    (72)      (73)
%e A343341                (322)   (431)    (432)     (433)
%e A343341                (3211)  (521)    (522)     (532)
%e A343341                        (3221)   (531)     (541)
%e A343341                        (32111)  (3222)    (721)
%e A343341                                 (3321)    (3322)
%e A343341                                 (4311)    (4321)
%e A343341                                 (5211)    (5221)
%e A343341                                 (32211)   (5311)
%e A343341                                 (321111)  (32221)
%e A343341                                           (33211)
%e A343341                                           (43111)
%e A343341                                           (52111)
%e A343341                                           (322111)
%e A343341                                           (3211111)
%t A343341 Table[Length[Select[IntegerPartitions[n],#=={}||!And@@IntegerQ/@(Max@@#/#)&]],{n,0,30}]
%Y A343341 The complement is counted by A130689.
%Y A343341 The dual version is A338470.
%Y A343341 The Heinz numbers of these partitions are A343337.
%Y A343341 The strict case is A343377.
%Y A343341 A000009 counts strict partitions.
%Y A343341 A000041 counts partitions.
%Y A343341 A000070 counts partitions with a selected part.
%Y A343341 A006128 counts partitions with a selected position.
%Y A343341 A015723 counts strict partitions with a selected part.
%Y A343341 Cf. A066186, A083710, A083711, A097986, A098965, A341450, A343342, A343345, A343346, A343381, A343382.
%K A343341 nonn
%O A343341 0,8
%A A343341 _Gus Wiseman_, Apr 15 2021