This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343342 #6 Apr 15 2021 21:42:54 %S A343342 1,0,0,0,0,1,0,3,2,5,5,12,7,22,20,32,34,60,54,98,93,145,159,237,229, %T A343342 361,384,529,574,810,840,1194,1275,1703,1886,2484,2660,3566,3909,4987, %U A343342 5520,7092,7737,9907,10917,13603,15226,18910,20801,25912,28797 %N A343342 Number of integer partitions of n with no part dividing or divisible by all the others. %C A343342 Alternative name: Number of integer partitions of n that are either empty or have smallest part not dividing all the others and greatest part not divisible by all the others. %e A343342 The a(0) = 1 through a(12) = 7 partitions (empty columns indicated by dots): %e A343342 () . . . . (32) . (43) (53) (54) (64) (65) (75) %e A343342 (52) (332) (72) (73) (74) (543) %e A343342 (322) (432) (433) (83) (552) %e A343342 (522) (532) (92) (732) %e A343342 (3222) (3322) (443) (4332) %e A343342 (533) (5322) %e A343342 (542) (33222) %e A343342 (722) %e A343342 (3332) %e A343342 (4322) %e A343342 (5222) %e A343342 (32222) %t A343342 Table[Length[Select[IntegerPartitions[n],#=={}||!And@@IntegerQ/@(#/Min@@#)&&!And@@IntegerQ/@(Max@@#/#)&]],{n,0,30}] %Y A343342 The opposite version is A130714. %Y A343342 The first condition alone gives A338470. %Y A343342 The Heinz numbers of these partitions are A343338 = A342193 /\ A343337. %Y A343342 The second condition alone gives A343341. %Y A343342 The half-opposite versions are A343344 and A343345. %Y A343342 The "or" instead of "and" version is A343346 (strict: A343382). %Y A343342 The strict case is A343379. %Y A343342 A000009 counts strict partitions. %Y A343342 A000041 counts partitions. %Y A343342 A000070 counts partitions with a selected part (strict: A015723). %Y A343342 Cf. A006128, A066186, A083710, A130689, A341450, A343343, A343377. %K A343342 nonn %O A343342 0,8 %A A343342 _Gus Wiseman_, Apr 15 2021