A343344 Number of integer partitions of n that are either empty, or do not have smallest part dividing all the others, but do have greatest part divisible by all the others.
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 5, 1, 6, 4, 6, 7, 15, 6, 16, 15, 20, 17, 36, 18, 43, 36, 46, 48, 72, 45, 93, 82, 103, 88, 152, 104, 179, 158, 191, 194, 285, 202, 328, 292, 373, 348, 502, 391, 576, 519, 659, 634, 864, 665
Offset: 0
Keywords
Examples
The a(18) = 1 through a(23) = 15 partitions (A..E = 10..14): 633222 C43 C332 C432 C64 E72 A522 66332 A5222 A552 F53 C322 633332 C3222 C433 I32 66322 6332222 663222 C3322 C443 633322 6333222 663322 C632 6322222 63222222 6333322 66632 63322222 C3332 C4322 663332 A52222 C32222 6333332 6632222 63332222 632222222
Crossrefs
The second condition alone gives A130689.
The first condition alone gives A338470.
The Heinz numbers of these partitions are 1 and A343339.
The opposite version is A343345.
The strict case is A343380.
A000009 counts strict partitions.
A000041 counts partitions.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],#=={}||!And@@IntegerQ/@(#/Min@@#)&&And@@IntegerQ/@(Max@@#/#)&]],{n,0,30}]
Comments