This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343345 #12 Apr 17 2021 01:57:24 %S A343345 1,0,0,0,0,0,1,1,4,6,11,16,29,36,59,79,115,149,216,270,379,473,634, %T A343345 793,1063,1292,1689,2079,2667,3241,4142,4982,6291,7582,9434,11321, %U A343345 14049,16709,20545,24490,29860,35380,43004,50741,61282,72284,86680,101906,121990 %N A343345 Number of integer partitions of n that are empty, or have smallest part dividing all the others, but do not have greatest part divisible by all the others. %C A343345 First differs from A343346 at a(14) = 79, A343346(14) = 80. %C A343345 Alternative name: Number of integer partitions of n with a part dividing all the others, but with no part divisible by all the others. %e A343345 The a(6) = 1 through a(11) = 16 partitions: %e A343345 (321) (3211) (431) (531) (541) (641) %e A343345 (521) (3321) (721) (731) %e A343345 (3221) (4311) (4321) (4331) %e A343345 (32111) (5211) (5221) (5321) %e A343345 (32211) (5311) (5411) %e A343345 (321111) (32221) (7211) %e A343345 (33211) (33221) %e A343345 (43111) (43211) %e A343345 (52111) (52211) %e A343345 (322111) (53111) %e A343345 (3211111) (322211) %e A343345 (332111) %e A343345 (431111) %e A343345 (521111) %e A343345 (3221111) %e A343345 (32111111) %t A343345 Table[Length[Select[IntegerPartitions[n],#=={}||And@@IntegerQ/@(#/Min@@#)&&!And@@IntegerQ/@(Max@@#/#)&]],{n,0,30}] %Y A343345 The first condition alone gives A083710. %Y A343345 The half-opposite versions are A130714 and A343342. %Y A343345 The Heinz numbers of these partitions are 1 and A343340. %Y A343345 The second condition alone gives A343341. %Y A343345 The opposite version is A343344. %Y A343345 The strict case is A343381. %Y A343345 A000009 counts strict partitions. %Y A343345 A000041 counts partitions. %Y A343345 A000070 counts partitions with a selected part. %Y A343345 A006128 counts partitions with a selected position. %Y A343345 A015723 counts strict partitions with a selected part. %Y A343345 A018818 counts partitions into divisors (strict: A033630). %Y A343345 Cf. A083711, A097986, A098743, A098965, A130689, A264401, A339563, A343337. %K A343345 nonn %O A343345 0,9 %A A343345 _Gus Wiseman_, Apr 15 2021