This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343346 #6 Apr 15 2021 21:43:18 %S A343346 1,0,0,0,0,1,1,4,6,11,16,29,36,59,80,112,150,214,271,374,476,624,800, %T A343346 1045,1298,1669,2088,2628,3258,4087,5000,6219,7602,9331,11368,13877, %U A343346 16754,20368,24536,29580,35468,42624,50845,60827,72357,86078,102100,121101 %N A343346 Number of integer partitions of n that are empty, have smallest part not dividing all the others, or greatest part not divisible by all the others. %C A343346 First differs from A343345 at a(14) = 80, A343345(14) = 79. %C A343346 Alternative name: Number of integer partitions of n with either no part dividing, or no part divisible by all the others. %e A343346 The a(0) = 1 through a(10) = 16 partitions (empty columns indicated by dots): %e A343346 () . . . . (32) (321) (43) (53) (54) (64) %e A343346 (52) (332) (72) (73) %e A343346 (322) (431) (432) (433) %e A343346 (3211) (521) (522) (532) %e A343346 (3221) (531) (541) %e A343346 (32111) (3222) (721) %e A343346 (3321) (3322) %e A343346 (4311) (4321) %e A343346 (5211) (5221) %e A343346 (32211) (5311) %e A343346 (321111) (32221) %e A343346 (33211) %e A343346 (43111) %e A343346 (52111) %e A343346 (322111) %e A343346 (3211111) %t A343346 Table[Length[Select[IntegerPartitions[n],#=={}||!And@@IntegerQ/@(#/Min@@#)||!And@@IntegerQ/@(Max@@#/#)&]],{n,0,30}] %Y A343346 The complement is counted by A130714. %Y A343346 The first condition alone gives A338470. %Y A343346 The second condition alone gives A343341. %Y A343346 The "and" instead of "or" version is A343342. %Y A343346 The Heinz numbers of these partitions are A343343. %Y A343346 The strict case is A343382. %Y A343346 A000009 counts strict partitions. %Y A343346 A000041 counts partitions. %Y A343346 A000070 counts partitions with a selected part. %Y A343346 A006128 counts partitions with a selected position. %Y A343346 A015723 counts strict partitions with a selected part. %Y A343346 Cf. A083710, A130689, A341450, A342193, A343337, A343338, A343379. %K A343346 nonn %O A343346 0,8 %A A343346 _Gus Wiseman_, Apr 15 2021