This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343347 #10 Apr 19 2021 08:05:39 %S A343347 1,1,1,2,2,2,3,3,3,4,4,4,6,5,4,6,6,6,8,7,7,10,9,9,12,10,8,11,11,10,14, %T A343347 13,11,13,12,15,20,17,15,19,19,19,22,18,17,23,22,22,28,25,24,31,28,26, %U A343347 32,32,30,34,32,29,37,33,27,36,33,34,44,38,36,45,45 %N A343347 Number of strict integer partitions of n with a part divisible by all the others. %C A343347 Alternative name: Number of strict integer partitions of n that are empty or have greatest part divisible by all the others. %H A343347 Andrew Howroyd, <a href="/A343347/b343347.txt">Table of n, a(n) for n = 0..1000</a> %F A343347 G.f.: 1 + Sum_{k>0} (x^k/(1 + x^k))*Product_{d|k} (1 + x^d). - _Andrew Howroyd_, Apr 17 2021 %e A343347 The a(1) = 1 through a(15) = 6 partitions (A..F = 10..15): %e A343347 1 2 3 4 5 6 7 8 9 A B C D E F %e A343347 21 31 41 42 61 62 63 82 A1 84 C1 C2 A5 %e A343347 51 421 71 81 91 632 93 841 D1 C3 %e A343347 621 631 821 A2 931 842 E1 %e A343347 B1 A21 C21 %e A343347 6321 8421 %t A343347 Table[Length[Select[IntegerPartitions[n],#=={}||UnsameQ@@#&&And@@IntegerQ/@(Max@@#/#)&]],{n,0,30}] %o A343347 (PARI) seq(n)={Vec(1 + sum(m=1, n, my(u=divisors(m)); x^m*prod(i=1, #u-1, 1 + x^u[i] + O(x^(n-m+1)))))} \\ _Andrew Howroyd_, Apr 17 2021 %Y A343347 The dual version is A097986 (non-strict: A083710). %Y A343347 The non-strict version is A130689 (Heinz numbers: complement of A343337). %Y A343347 The strict complement is counted by A343377. %Y A343347 The case with smallest part divisible by all the others is A343378. %Y A343347 The case with smallest part not divisible by all the others is A343380. %Y A343347 A000005 counts divisors. %Y A343347 A000009 counts strict partitions. %Y A343347 A000070 counts partitions with a selected part. %Y A343347 A015723 counts strict partitions with a selected part. %Y A343347 A018818 counts partitions into divisors (strict: A033630). %Y A343347 A167865 counts strict chains of divisors > 1 summing to n. %Y A343347 A339564 counts factorizations with a selected factor. %Y A343347 Cf. A064410, A098743, A200745, A264401, A339563, A341450, A343341, A343344, A343379, A343382. %K A343347 nonn %O A343347 0,4 %A A343347 _Gus Wiseman_, Apr 16 2021