cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343348 Irregular triangle read by rows where T(n,k) is the number of strict integer partitions of n with least gap k.

This page as a plain text file.
%I A343348 #8 Apr 19 2021 15:00:55
%S A343348 1,0,1,1,0,1,0,1,1,1,0,2,1,0,2,1,0,1,3,1,1,0,3,2,1,0,5,2,1,0,5,3,1,0,
%T A343348 1,7,3,1,1,0,8,4,2,1,0,10,5,2,1,0,12,6,3,1,0,15,7,3,1,0,1,17,9,4,1,1,
%U A343348 0,21,10,4,2,1,0,25,12,6,2,1,0,29,15,6,3,1,0,35,17,8,3,1,0
%N A343348 Irregular triangle read by rows where T(n,k) is the number of strict integer partitions of n with least gap k.
%C A343348 The least gap (or mex) of a partition is the least positive integer that is not a part.
%C A343348 Row lengths are chosen to be consistent with the non-strict case A264401.
%H A343348 George E. Andrews and David Newman, <a href="https://doi.org/10.1007/s00026-019-00427-w">Partitions and the Minimal Excludant</a>, Annals of Combinatorics, Volume 23, May 2019, Pages 249-254.
%H A343348 Brian Hopkins, James A. Sellers, and Dennis Stanton, <a href="https://arxiv.org/abs/2009.10873">Dyson's Crank and the Mex of Integer Partitions</a>, arXiv:2009.10873 [math.CO], 2020.
%e A343348 Triangle begins:
%e A343348    1
%e A343348    0   1
%e A343348    1   0
%e A343348    1   0   1
%e A343348    1   1   0
%e A343348    2   1   0
%e A343348    2   1   0   1
%e A343348    3   1   1   0
%e A343348    3   2   1   0
%e A343348    5   2   1   0
%e A343348    5   3   1   0   1
%e A343348    7   3   1   1   0
%e A343348    8   4   2   1   0
%e A343348   10   5   2   1   0
%e A343348   12   6   3   1   0
%e A343348   15   7   3   1   0   1
%t A343348 mingap[q_]:=Min@@Complement[Range[If[q=={},0,Max[q]]+1],q];
%t A343348 Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&mingap[#]==k&]],{n,0,15},{k,Round[Sqrt[2*(n+1)]]}]
%Y A343348 Row sums are A000009.
%Y A343348 Row lengths are A002024.
%Y A343348 Column k = 1 is A025147.
%Y A343348 Column k = 2 is A025148.
%Y A343348 The non-strict version is A264401.
%Y A343348 A000009 counts strict partitions.
%Y A343348 A000041 counts partitions.
%Y A343348 A000070 counts partitions with a selected part.
%Y A343348 A006128 counts partitions with a selected position.
%Y A343348 A015723 counts strict partitions with a selected part.
%Y A343348 A257993 gives the least gap of the partition with Heinz number n.
%Y A343348 A339564 counts factorizations with a selected factor.
%Y A343348 A342050 ranks partitions with even least gap.
%Y A343348 A342051 ranks partitions with odd least gap.
%Y A343348 Cf. A003242, A083710, A083711, A097986, A098743, A098965, A130689, A200745, A341450, A343347, A343377.
%K A343348 nonn,tabf
%O A343348 0,12
%A A343348 _Gus Wiseman_, Apr 18 2021