cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343351 Expansion of Product_{k>=1} 1 / (1 - x^k)^(6^(k-1)).

This page as a plain text file.
%I A343351 #10 Apr 12 2021 12:13:39
%S A343351 1,1,7,43,280,1792,11586,74550,479892,3083640,19794678,126908502,
%T A343351 812761299,5199586119,33230586285,212172173565,1353444677529,
%U A343351 8626044781761,54931168743703,349524243121795,2222294161109422,14119034725444774,89639674321304392,568720801952770012
%N A343351 Expansion of Product_{k>=1} 1 / (1 - x^k)^(6^(k-1)).
%F A343351 a(n) ~ exp(sqrt(2*n/3) - 1/12 + c/6) * 6^(n - 1/4) / (2*sqrt(Pi)*n^(3/4)), where c = Sum_{j>=2} 1/(j * (6^(j-1) - 1)). - _Vaclav Kotesovec_, Apr 12 2021
%p A343351 a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(
%p A343351       d*6^(d-1), d=numtheory[divisors](j)), j=1..n)/n)
%p A343351     end:
%p A343351 seq(a(n), n=0..23);  # _Alois P. Heinz_, Apr 12 2021
%t A343351 nmax = 23; CoefficientList[Series[Product[1/(1 - x^k)^(6^(k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
%t A343351 a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[d 6^(d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 23}]
%Y A343351 Cf. A034691, A104460, A144070, A343349, A343350, A343352, A343353, A343354, A343355.
%K A343351 nonn
%O A343351 0,3
%A A343351 _Ilya Gutkovskiy_, Apr 12 2021