This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343354 #9 Apr 12 2021 12:14:48 %S A343354 1,1,10,91,865,8155,77251,730435,6905560,65233120,615847378, %T A343354 5810270782,54784324495,516250199827,4862041512625,45765734635702, %U A343354 430560567351208,4048630897384450,38051334554031551,357459295903931045,3356488167698692226,31503001136703776561 %N A343354 Expansion of Product_{k>=1} 1 / (1 - x^k)^(9^(k-1)). %F A343354 a(n) ~ exp(2*sqrt(n/9) - 1/18 + c/9) * 9^(n - 1/4) / (2*sqrt(Pi)*n^(3/4)), where c = Sum_{j>=2} 1/(j * (9^(j-1) - 1)). - _Vaclav Kotesovec_, Apr 12 2021 %p A343354 a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add( %p A343354 d*9^(d-1), d=numtheory[divisors](j)), j=1..n)/n) %p A343354 end: %p A343354 seq(a(n), n=0..21); # _Alois P. Heinz_, Apr 12 2021 %t A343354 nmax = 21; CoefficientList[Series[Product[1/(1 - x^k)^(9^(k - 1)), {k, 1, nmax}], {x, 0, nmax}], x] %t A343354 a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[d 9^(d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 21}] %Y A343354 Cf. A034691, A104460, A144073, A343349, A343350, A343351, A343352, A343353, A343355. %K A343354 nonn %O A343354 0,3 %A A343354 _Ilya Gutkovskiy_, Apr 12 2021