This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343361 #10 Apr 13 2021 04:43:50 %S A343361 1,1,4,20,86,390,1724,7644,33697,148401,651584,2855840,12491276, %T A343361 54540636,237733768,1034610232,4495832776,19508749928,84540638312, %U A343361 365888222552,1581630245756,6829047398156,29453496620000,126898489491904,546183557447366,2348560270762006,10089340886428928 %N A343361 Expansion of Product_{k>=1} (1 + x^k)^(4^(k-1)). %F A343361 a(n) ~ exp(sqrt(n) - 1/8 - c/4) * 2^(2*n - 3/2) / (sqrt(Pi)*n^(3/4)), where c = Sum_{j>=2} (-1)^j / (j * (4^(j-1) - 1)). - _Vaclav Kotesovec_, Apr 13 2021 %p A343361 h:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, %p A343361 add(h(n-i*j, i-1)*binomial(4^(i-1), j), j=0..n/i))) %p A343361 end: %p A343361 a:= n-> h(n$2): %p A343361 seq(a(n), n=0..26); # _Alois P. Heinz_, Apr 12 2021 %t A343361 nmax = 26; CoefficientList[Series[Product[(1 + x^k)^(4^(k - 1)), {k, 1, nmax}], {x, 0, nmax}], x] %t A343361 a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[(-1)^(k/d + 1) d 4^(d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 26}] %o A343361 (PARI) seq(n)={Vec(prod(k=1, n, (1 + x^k + O(x*x^n))^(4^(k-1))))} \\ _Andrew Howroyd_, Apr 12 2021 %Y A343361 Cf. A098407, A292838, A343349, A343360, A343362, A343363, A343364, A343365, A343366. %K A343361 nonn %O A343361 0,3 %A A343361 _Ilya Gutkovskiy_, Apr 12 2021