This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343362 #10 Apr 13 2021 04:44:15 %S A343362 1,1,5,30,160,885,4810,26185,142005,769305,4159301,22455876,121057525, %T A343362 651737675,3504241650,18818709130,100945053055,540885242825, %U A343362 2895159035375,15481318817450,82704855762375,441427664993275,2354020475714775,12542918682786300,66778882780674975 %N A343362 Expansion of Product_{k>=1} (1 + x^k)^(5^(k-1)). %F A343362 a(n) ~ exp(2*sqrt(n/5) - 1/10 - c/5) * 5^(n - 1/4) / (2*sqrt(Pi)*n^(3/4)), where c = Sum_{j>=2} (-1)^j / (j * (5^(j-1) - 1)). - _Vaclav Kotesovec_, Apr 13 2021 %p A343362 h:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, %p A343362 add(h(n-i*j, i-1)*binomial(5^(i-1), j), j=0..n/i))) %p A343362 end: %p A343362 a:= n-> h(n$2): %p A343362 seq(a(n), n=0..24); # _Alois P. Heinz_, Apr 12 2021 %t A343362 nmax = 24; CoefficientList[Series[Product[(1 + x^k)^(5^(k - 1)), {k, 1, nmax}], {x, 0, nmax}], x] %t A343362 a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[(-1)^(k/d + 1) d 5^(d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 24}] %o A343362 (PARI) seq(n)={Vec(prod(k=1, n, (1 + x^k + O(x*x^n))^(5^(k-1))))} \\ _Andrew Howroyd_, Apr 12 2021 %Y A343362 Cf. A098407, A292839, A343350, A343360, A343361, A343363, A343364, A343365, A343366. %K A343362 nonn %O A343362 0,3 %A A343362 _Ilya Gutkovskiy_, Apr 12 2021