cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343363 Expansion of Product_{k>=1} (1 + x^k)^(6^(k-1)).

This page as a plain text file.
%I A343363 #14 Apr 15 2021 23:41:40
%S A343363 1,1,6,42,267,1743,11234,72470,466251,2996883,19234836,123315828,
%T A343363 789682546,5051601010,32282443044,206104519572,1314652656453,
%U A343363 8378283675645,53350205335626,339445117302366,2158091256282273,13710402587540469,87040883294333382,552205562345916570
%N A343363 Expansion of Product_{k>=1} (1 + x^k)^(6^(k-1)).
%H A343363 Robert Israel, <a href="/A343363/b343363.txt">Table of n, a(n) for n = 0..1000</a>
%F A343363 a(n) ~ exp(sqrt(2*n/3) - 1/12 - c/6) * 6^(n - 1/4) / (2*sqrt(Pi)*n^(3/4)), where c = Sum_{j>=2} (-1)^j / (j * (6^(j-1) - 1)). - _Vaclav Kotesovec_, Apr 13 2021
%p A343363 N:= 100: # for a(0)..a(N)
%p A343363 G:= mul((1+x^k)^(6^(k-1)),k=1..N):
%p A343363 S:= series(G,x,N+1):
%p A343363 seq(coeff(S,x,k),k=0..N); # _Robert Israel_, Apr 12 2021
%t A343363 nmax = 23; CoefficientList[Series[Product[(1 + x^k)^(6^(k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
%t A343363 a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[(-1)^(k/d + 1) d 6^(d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 23}]
%o A343363 (PARI) seq(n)={Vec(prod(k=1, n, (1 + x^k + O(x*x^n))^(6^(k-1))))} \\ _Andrew Howroyd_, Apr 12 2021
%Y A343363 Cf. A098407, A292840, A343351, A343360, A343361, A343362, A343364, A343365, A343366.
%K A343363 nonn
%O A343363 0,3
%A A343363 _Ilya Gutkovskiy_, Apr 12 2021