This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343364 #10 Apr 13 2021 04:45:05 %S A343364 1,1,7,56,413,3108,23163,172711,1285256,9556603,70980000,526711507, %T A343364 3904946864,28926003505,214095348671,1583389916081,11701578676851, %U A343364 86415267247743,637732279701496,4703270177738076,34664585073280204,255332979654402524,1879629724498860397,13829015594546304600 %N A343364 Expansion of Product_{k>=1} (1 + x^k)^(7^(k-1)). %F A343364 a(n) ~ exp(2*sqrt(n/7) - 1/14 - c/7) * 7^(n - 1/4) / (2*sqrt(Pi)*n^(3/4)), where c = Sum_{j>=2} (-1)^j / (j * (7^(j-1) - 1)). - _Vaclav Kotesovec_, Apr 13 2021 %p A343364 h:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, %p A343364 add(h(n-i*j, i-1)*binomial(7^(i-1), j), j=0..n/i))) %p A343364 end: %p A343364 a:= n-> h(n$2): %p A343364 seq(a(n), n=0..23); # _Alois P. Heinz_, Apr 12 2021 %t A343364 nmax = 23; CoefficientList[Series[Product[(1 + x^k)^(7^(k - 1)), {k, 1, nmax}], {x, 0, nmax}], x] %t A343364 a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[(-1)^(k/d + 1) d 7^(d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 23}] %o A343364 (PARI) seq(n)={Vec(prod(k=1, n, (1 + x^k + O(x*x^n))^(7^(k-1))))} \\ _Andrew Howroyd_, Apr 12 2021 %Y A343364 Cf. A098407, A292841, A343352, A343360, A343361, A343362, A343363, A343365, A343366. %K A343364 nonn %O A343364 0,3 %A A343364 _Ilya Gutkovskiy_, Apr 12 2021