cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343368 Number of ways to write n as floor((a^3+b^3)/3) + floor((c^3+d^3)/5), where a,b,c,d are nonnegative integers with a > b and c >= d.

Original entry on oeis.org

3, 2, 3, 6, 2, 3, 1, 3, 2, 7, 6, 3, 6, 2, 7, 2, 6, 1, 2, 2, 1, 10, 6, 3, 6, 6, 5, 6, 6, 4, 4, 5, 1, 4, 9, 6, 4, 4, 1, 5, 2, 4, 7, 5, 6, 5, 13, 6, 4, 6, 6, 7, 6, 5, 6, 8, 4, 4, 4, 5, 3, 2, 2, 4, 7, 4, 4, 8, 8, 5, 6, 6, 9, 8, 7, 8, 3, 15, 2, 10, 3, 8, 4, 3, 7, 6, 8, 4, 7, 9, 5, 4, 7, 8, 6, 6, 2, 8, 10, 4, 6
Offset: 0

Views

Author

Zhi-Wei Sun, Apr 12 2021

Keywords

Comments

Conjecture 1: a(n) > 0 for all n >= 0.
Conjecture 2: Each n = 0,1,... can be written as floor((a^3+b^3)/4) + floor((c^3+d^3)/5) with a,b,c,d nonnegative integers.
Both conjectures have been verified for all n = 0..10^5.
We also conjecture that the pair (4,5) of denominators in Conjecture 2 can be replaced by some other pairs such as (4,6), (5,6), (3,7), (4,7), (5,7), (6,7).

Examples

			a(1) = 2 with 1 = floor((1^3+0^3)/3) + floor((2^3+0^3)/5) = floor((1^3+0^3)/3) + floor((2^3+1^3)/5).
a(17) = 1 with 17 = floor((2^3+1^3)/3) + floor((4^3+2^3)/5).
a(20) = 1 with 20 = floor((2^3+0^3)/3) + floor((4^3+3^3)/5).
a(38) = 1 with 38 = floor((4^3+2^3)/3) + floor((4^3+2^3)/5).
a(103) = 1 with 103 = floor((6^3+4^3)/3) + floor((3^3+3^3)/5).
a(304) = 1 with 304 = floor((2^3+0^3)/3) + floor((10^3+8^3)/5).
		

Crossrefs

Programs

  • Mathematica
    CQ[n_]:=CQ[n]=IntegerQ[n^(1/3)];
    tab={};Do[r=0;Do[If[CQ[5(n-Floor[(x^3+y^3)/3])+s-z^3],r=r+1],{s,0,4},{x,1,(3n+2)^(1/3)},{y,0,Min[x-1,(3n+2-x^3)^(1/3)]},{z,0,((5(n-Floor[(x^3+y^3)/3])+s)/2)^(1/3)}];tab=Append[tab,r],{n,0,100}];Print[tab]